Next Article in Journal
The “Generator” of Int-Soft Filters on Residuated Lattices
Next Article in Special Issue
Random Coupled Hilfer and Hadamard Fractional Differential Systems in Generalized Banach Spaces
Previous Article in Journal
Low Carbon Supply Chain Coordination for Imperfect Quality Deteriorating Items
Previous Article in Special Issue
Solving Non-Linear Fractional Variational Problems Using Jacobi Polynomials
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On the Solvability of a Mixed Problem for a High-Order Partial Differential Equation with Fractional Derivatives with Respect to Time, with Laplace Operators with Spatial Variables and Nonlocal Boundary Conditions in Sobolev Classes

by
Onur Alp İlhan
1,*,
Shakirbay G. Kasimov
2,
Shonazar Q. Otaev
2 and
Haci Mehmet Baskonus
3
1
Department of Mathematics and Science Education, Faculty of Education, Erciyes University, Kayseri 38039, Turkey
2
Faculty of Mathematics, National University of Uzbekistan, Tashkent 100174, Uzbekistan
3
Department of Mathematics and Science Education, Faculty of education, Harran University, Sanliurfa 63190, Turkey
*
Author to whom correspondence should be addressed.
Mathematics 2019, 7(3), 235; https://doi.org/10.3390/math7030235
Submission received: 16 November 2018 / Revised: 28 February 2019 / Accepted: 1 March 2019 / Published: 5 March 2019

Abstract

:
In this paper, we study the solvability of a mixed problem for a high-order partial differential equation with fractional derivatives with respect to time, and with Laplace operators with spatial variables and nonlocal boundary conditions in Sobolev classes.

1. Introduction

The spectral theory of operators finds numerous uses in various fields of mathematics and their applications.
An important part of the spectral theory of differential operators is the distribution of their eigenvalues. This classical question was studied for a second-order operator on a finite interval by Liouville and Sturm. Later, G.D. Birkhoff [1,2,3] studied the distribution of eigenvalues for an ordinary differential operator of arbitrary order on a finite interval with regular boundary conditions.
For quantum mechanics, it is especially interesting to distribute the eigenvalues of operators defined throughout the space and having a discrete spectrum. E.C. Titchmarsh [4,5,6,7,8,9] was the first to rigorously establish the formula for the distribution of the number of eigenvalues for a one-dimensional Sturm-Liouville operator on the whole axis with potential growing at infinity. He also first strictly established the distribution formula for the Schrödinger operator. B.M. Levitan [10,11,12] deserves much credit for the improvement of E.C. Titchmarsh’s method.
In solving many mathematical physics problems, the need arises for the expansion of an arbitrary function in a Fourier series with respect to Sturm-Liouville eigenvalues. The so-called regular case of the Sturm-Liouville problem corresponding to a finite interval and a continuous coefficient of the equation has been studied for a relatively long time and is usually described in detail in the manuals on the equations of mathematical physics and integral equations.
The Sturm-Liouville problem for the so-called singular case, as well as with nonlocal boundary conditions, is much less known.
As it is known, so-called fractal media are studied in solid-state physics and, in particular, diffusion phenomena in them. In one of the models studied in [13], diffusion in a strongly porous (fractal) medium is described by an equation of the type of heat-conduction equation, but with a fractional derivative with respect to time coordinate
D t ( α ) u ( x , t ) = 2 ( u ( x , t ) x 2 , 0 < α < 1 .
The formulation of initial-boundary value problems for Equation (1), similar to the problems for parabolic differential equations, makes sense if by a regularized fractional derivative:
D ( α ) φ ( t ) = 1 Γ ( 1 α ) d d t 0 1 ( t τ ) α φ ( τ ) d τ t α φ ( 0 ) , t 0
Study of the form equations
D t ( α ) u = A u
where A is an elliptic operator (in [14,15,16]). In recent years, many authors studied fractional differential equations in [17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34].

2. Problem Formulation

In this work, we consider the equation of the form
D 0 t α u ( x , t ) + ( Δ ) ν u ( x , t ) = f ( x , t ) , ( x , t ) Π × ( 0 , ) , l 1 < α l , l , ν N
with initial conditions
lim t 0 D 0 t α k u ( x , t ) = φ k ( x ) , k = 1 , 2 , , l
and boundary conditions
α j · ( Δ ) i u ( x 1 , , x j , , x N , t ) x j = 0 + β j · ( Δ ) i u ( x 1 , , x j , , x N , t ) x j = π = 0 , 1 j p , β j · ( Δ ) i u ( x 1 , , x j , , x N , t ) x j x j = 0 + α j · ( Δ ) i u ( x 1 , , x j , , x N , t ) x j x j = π = 0 , 1 j p , ( Δ ) i u ( x 1 , , x j , , x N , t ) x j = 0 = ( Δ ) i u ( x 1 , , x j , , x N , t ) x j = π , p + 1 j q , ( Δ ) i u ( x 1 , , x j , , x N , t ) x j x j = 0 = ( Δ ) i u ( x 1 , , x j , , x N , t ) x j x j = π , p + 1 j q , ( Δ ) i u ( x 1 , , x j , , x N , t ) x j = 0 = 0 , q + 1 j N , ( Δ ) i u ( x 1 , , x j , , x N , t ) x j = π = 0 , q + 1 j N , 1 p q N , i = 0 , 1 , , ν 1 ,
where ( x , t ) = ( x 1 , , x j , , x N , t ) Π × ( 0 , ) , Π = ( 0 , π ) × × ( 0 , π ) , α j = c o n s t , β j = c o n s t , and f ( x , t ) , φ k ( x ) , k = 1 , 2 , , l are functions that can be expanded in terms of the system of eigenfunctions { v n ( x ) , n Z N } of the spectral problem:
( Δ ) ν v ( x ) = μ v ( x ) ,
α j · ( Δ ) i v ( x 1 , , x j , , x N ) x j = 0 + β j · ( Δ ) i v ( x 1 , , x j , , x N ) x j = π = 0 , 1 j p , β j · ( Δ ) i v ( x 1 , , x j , , x N ) x j x j = 0 + α j · ( Δ ) i v ( x 1 , , x j , , x N ) x j x j = π = 0 , 1 j p , ( Δ ) i v ( x 1 , , x j , , x N ) x j = 0 = ( Δ ) i v ( x 1 , , x j , , x N ) x j = π , p + 1 j q , ( Δ ) i v ( x 1 , , x j , , x N ) x j x j = 0 = ( Δ ) i v ( x 1 , , x j , , x N ) x j x j = π , p + 1 j q , ( Δ ) i v ( x 1 , , x j , , x N ) x j = 0 = 0 , q + 1 j N , ( Δ ) i v ( x 1 , , x j , , x N ) x j = π = 0 , q + 1 j N , 1 p q N , i = 0 , 1 , , ν 1 .
Here, for α < 0 , , fractional integral D α has the form
D a t α u ( x , t ) = s i g n ( t a ) Γ ( α ) a t u ( x , τ ) · d τ | t τ | α + 1 ,
D a t α u ( x , t ) = u ( x , t ) for α = 0 , and for l 1 < α l , l N , the fractional derivative has the form
D a t α u ( x , t ) = s i g n l ( t a ) d l d t l D a t α l u ( x , t ) = = s i g n l + 1 ( t a ) Γ ( l α ) d l d t l a t u ( x , τ ) · d τ | t τ | α l + 1 .
In [17], Problems (4)–(6) and, accordingly, spectral Problems (7) and (8) in the case ν = 1 , were considered.

3. Preliminaries

More detailed information for this section can be found in [17]. We look for eigenfunctions of spectral Problems (7) and (8) in the form of the product v ( x ) = y 1 ( x 1 ) · · y N ( x N ) . Then, we obtain, instead of spectral Problems (7) and (8), the following spectral problem:
y ( x ) = μ y ( x ) , μ = λ 2
α y ( 0 ) + β y ( π ) = 0 , β y ( 0 ) + α y ( π ) = 0 .
In the case of | α | = | β | , i.e., with boundary conditions y ( 0 ) = y ( π ) , y ( 0 ) = y ( π ) or y ( 0 ) = y ( π ) , y ( 0 ) = y ( π ) , spectral Problems (7) and (8) were investigated by many authors (see, for example, [35,36,37,38,39,40,41]). In order to simplify calculations, we confined ourselves to the case of | α | | β | , α 0 , β 0 . It is not difficult to see that μ = 0 is not an eigenvalue of Problems (9) and (10). In fact, if μ = 0 is the eigenvalue, then y = 0 , y = a x + b , α b + β ( a π + b ) = 0 , β a + α a = 0 . We obtained from here a = 0 , b = 0 , i.e., y 0 . Similarly, for μ < 0 , Problems (9) and (10) have no nontrivial solutions.
For μ > 0 , the general solution of Problem (9) has the form
y ( x ) = A c o s λ x + B s i n λ x .
From boundary conditions, we have:
α y ( 0 ) + β y ( π ) = α A + β ( A c o s λ π + B s i n λ π ) = 0 ,
β y ( 0 ) + α y ( π ) = β ( λ B ) + α ( λ B c o s λ π λ A s i n λ π ) = 0 ,
i.e.,
( α + β c o s λ π ) A + β s i n λ π B = 0 , α s i n λ π A ( β + α c o s λ π ) B = 0 .
Hence, the nontrivial solutions of Problems (9) and (10) are only possible in the case of
( α + β c o s λ π ) ( β α c o s λ π ) α β s i n 2 ( λ π ) = 0 .
Furthermore,
α β α 2 c o s λ π β 2 c o s λ π α β c o s 2 λ π α β s i n 2 λ π = 0 ,
i.e., ( α 2 + β 2 ) c o s λ π = 2 α β or c o s λ π = 2 α β α 2 + β 2 .
Therefore, λ π = arccos 2 α β α 2 + β 2 or
λ π = ± arccos 2 α β α 2 + β 2 + 2 n π , n Z .
Further,
μ n ± = ( 2 n + ε n φ ) 2 = ( 2 n ε n φ ) 2 = μ n , ε n = ± 1 , φ = 1 π arccos 2 α β α 2 + β 2 , n Z .
That’s why μ n ± μ n ± means that ε n ε n , i.e., ε n = ε n , n Z . Thus, the eigenvalues and eigenfunctions of Problems (9) and (10) are
μ n = λ n 2 = ( 2 n + ε n φ ) 2 , φ = 1 π arccos 2 α β α 2 + β 2 , ε n = ± 1 , ε n = ε n , n Z
and
y n ( x ) = B n β + α cos λ n π α sin λ n π cos λ n x + sin λ n x ,
respectively, where
β + α cos λ n π α sin λ n π = β 2 α 2 β α 2 + β 2 ε n α 1 4 α 2 β 2 ( α 2 + β 2 ) 2 = β ( β 2 α 2 ) ε n α β 2 α 2 = ε n s i g n ( β 2 α 2 ) β α ,
hence, y n ( x ) = B n ε n s i g n ( β 2 α 2 ) β α cos λ n x + s i n λ n x . Choosing
B n = ε n s i g n ( β 2 α 2 ) α α 2 + β 2 2 π 1 1 + ( 2 n ) 2 s
we obtain
y n ( x ) = 2 π 1 α 2 + β 2 1 1 + ( 2 n ) 2 s β cos λ n x + ε n s i g n ( β 2 α 2 ) α sin λ n x .
Denote ω n = 2 π 1 α 2 + β 2 1 1 + ( 2 n ) 2 s . Then,
y n ( x ) = ω n β cos λ n x + ε n s i g n ( β 2 α 2 ) α sin λ n x .
The norm in space W 2 s ( 0 , π ) is introduced as follows:
f W 2 s ( 0 , π ) 2 = f L 2 ( 0 , π ) 2 + D s f L 2 ( 0 , π ) 2 .
Let ε n = ε n . Then, system of vectors
z n ( x ) = ω n β cos 2 n x + ε n s i g n ( β 2 α 2 ) α sin 2 n x
forms the complete orthonormal system in W 2 s ( 0 , π ) . The following lemma holds.
Lemma 1.
Let { a n } be a finite system of complex numbers. Then, inequalities
N N a n ( y n ( x ) z n ( x ) ) L 2 ( 0 , π ) 2 · max x [ 0 , π ] | e i φ x 1 | · N N a n · c n 2
are valid where
c n = 1 1 + ( 2 n ) 2 s , s = 1 , 2 , 3 , .
Proof. 
Calculating the difference of y n ( x ) z n ( x ) , we obtain
y n ( x ) z n ( x ) =
ω n [ β ( cos λ n x cos 2 n x ) + ε n s i g n ( β 2 α 2 ) α ( sin λ n x sin 2 n x ) ] =
= ω n [ ( ε n s i g n ( β 2 α 2 ) α + β i ) e i ε n φ x 1 2 i e 2 n i x +
+ ( ε n s i g n ( β 2 α 2 ) α β i ) 1 e i ε n φ x 2 i e 2 n i x ] .
Then,
N N a n ( y n z n ) = N N a n ω n ( ε n s i g n ( β 2 α 2 ) α + β i ) e i ε n φ x 1 2 i e 2 n i x +
+ ( ε n s i g n ( β 2 α 2 ) α β i ) 1 e i ε n φ x 2 i e 2 n i x .
Using properties of the norm, we have
N N a n ( y n z n ) L 2 ( 0 , π ) =
= s i g n ( β 2 α 2 ) α + β i 2 i ( e i φ x 1 ) N , ε n = 1 N a n ω n e 2 n i x +
+ s i g n ( β 2 α 2 ) α + β i 2 i ( e i φ x 1 ) N , ε n = 1 N a n ω n e 2 n i x +
+ s i g n ( β 2 α 2 ) α β i 2 i ( 1 e i φ x ) N , ε n = 1 N a n ω n e 2 n i x +
+ s i g n ( β 2 α 2 ) α β i 2 i ( 1 e i φ x ) N , ε n = 1 N a n ω n e 2 n i x L 2 ( 0 , π ) =
= s i g n ( β 2 α 2 ) α + β i 2 i ( e i φ x 1 ) ×
× N , ε n = 1 N a n ω n e 2 n i x + N , ε n = 1 N a n ω n e 2 n i x +
+ s i g n ( β 2 α 2 ) α + β i 2 i ( e i φ x 1 ) ×
× N , ε n = 1 N a n ω n e 2 n i x + N , ε n = 1 N a n ω n e 2 n i x L 2 ( 0 , π )
α 2 + β 2 2 · max x [ 0 , π ] | e i φ x 1 | ×
× N , ε n = 1 N a n ω n e 2 n i x + N , ε n = 1 N a n ω n e 2 n i x L 2 ( 0 , π ) +
+ N , ε n = 1 N a n ω n e 2 n i x + N , ε n = 1 N a n ω n e 2 n i x L 2 ( 0 , π ) =
= α 2 + β 2 2 max x [ 0 , π ] | e i φ x 1 | N , ε n = 1 N a n ω n 2 + N , ε n = 1 N a n ω n 2 +
+ N , ε n = 1 N a n ω n 2 + N , ε n = 1 N a n ω n 2 · π =
= α 2 + β 2 · max x [ 0 , π ] | e i φ x 1 | · π · N N a n ω n 2 .
Thus, denoting c n = 1 1 + ( 2 n ) 2 s , we obtain
N N a n ( y n ( x ) z n ( x ) ) L 2 ( 0 , π ) 2 · max x [ 0 , π ] | e i φ x 1 | · N N | a n · c n | 2 .
Lemma 2.
Let { a n } be a finite system of complex numbers. Then, inequalities
D s N N a n ( y n ( x ) z n ( x ) ) L 2 ( 0 , π )
2 max x [ 0 , π ] | e i φ x 1 | + ( φ + 1 ) s 1 · N N | a n · c n · ( 2 n ) s | 2
are valid at s = 1 , 2 , 3 , .
Proof. 
Denote
θ = 2 · max x [ 0 , π ] | e i φ x 1 | ,
since
N N a n ( y n z n ) = s i g n ( β 2 α 2 ) α + β i 2 i · ( e i φ x 1 ) ·
· N , ε n = 1 N a n · ω n · e 2 n i x + N , ε n = 1 N a n · ω n · e 2 n i x +
+ s i g n ( β 2 α 2 ) α + β i 2 i · e i φ x 1 ·
· N , ε n = 1 N a n · ω n · e 2 n i x + N , ε n = 1 N a n · ω n · e 2 n i x ,
using properties of the norm, we have
D s N N a n ( y n z n ) L 2 ( 0 , π ) α 2 + β 2 2 · ( k = 0 s C s k · D k ( e i φ x 1 ) ·
· D s k N , ε n = 1 N a n · ω n · e 2 n i x + N , ε n = 1 N a n · ω n · e 2 n i x L 2 ( 0 , π ) +
+ k = 0 s C s k · D k ( e i φ x 1 ) ·
· D s k N , ε n = 1 N a n · ω n · e 2 n i x + N , ε n = 1 N a n · ω n · e 2 n i x L 2 ( 0 , π ) )
α 2 + β 2 2 · max x [ 0 , π ] | e i φ x 1 | ×
× N , ε n = 1 N a n · ω n · ( 2 n ) s e 2 n i x + N , ε n = 1 N a n · ω n · ( 2 n ) s e 2 n i x L 2 ( 0 , π ) +
+ k = 1 s C s k · φ k · N , ε n = 1 N a n · ω n · ( 2 n ) s k e 2 n i x +
+ N , ε n = 1 N a n · ω n · ( 2 n ) s k e 2 n i x L 2 ( 0 , π ) + max x [ 0 , π ] | e i φ x 1 | ×
× N , ε n = 1 N a n · ω n · ( 2 n ) s · e 2 n i x + N , ε n = 1 N a n · ω n · ( 2 n ) s · e 2 n i x L 2 ( 0 , π ) +
+ k = 1 s C s k · φ k · N , ε n = 1 N a n · ω n · ( 2 n ) s k · e 2 n i x +
+ N , ε n = 1 N a n · ω n · ( 2 n ) s k · e 2 n i x L 2 ( 0 , π ) α 2 + β 2 ×
× max x [ 0 , π ] | e i φ x 1 | N N | a n ω n ( 2 n ) s | 2 + k = 1 s C s k φ k N N | a n ω n ( 2 n ) s k | 2 ×
× π = 2 max x [ 0 , π ] | e i φ x 1 | · N N | a n · c n · ( 2 n ) s | 2 +
+ k = 1 s C s k · φ k · N N | a n · c n · ( 2 n ) s k | 2
2 max x [ 0 , π ] | e i φ x 1 | + ( φ + 1 ) s 1 · N N | a n · c n · ( 2 n ) s | 2 .
Thus, inequalities
D s N N a n ( y n ( x ) z n ( x ) ) L 2 ( 0 , π )
2 max x [ 0 , π ] | e i φ x 1 | + ( φ + 1 ) s 1 · N N | a n · c n · ( 2 n ) s | 2
hold at s = 1 , 2 , 3 , .
Using Lemmas 1 and 2, we obtain
Lemma 3.
Let { a n } be a finite system of complex numbers. Then the following inequality
N N a n ( y n ( x ) z n ( x ) ) W 2 s ( 0 , π )
θ 2 + 2 θ 2 + ( φ + 1 ) s 1 2 · σ ( s ) · N N | a n | 2
is valid where σ ( 0 ) = 1 2 , σ ( s ) = 1 at s > 0 .
Lemma 4.
Let α 0 , β 0 , | α | | β | be real numbers, and
ρ = θ 2 + 2 θ 2 + ( φ + 1 ) s 1 2 · σ ( s ) < 1
where σ ( 0 ) = 1 2 , σ ( s ) = 1 at s > 0 , θ = 2 · max x [ 0 , π ] | e i φ x 1 | , λ n = 2 n + ε n · φ , φ = 1 π arccos 2 α β α 2 + β 2 , ε n = ε n = ± 1 at n Z .
Then, eigenfunction system
y n ( x ) = 2 π · β cos λ n x + ε n · s i g n ( β 2 α 2 ) · α sin λ n x α 2 + β 2 · 1 + ( 2 n ) 2 s , n Z ,
of spectral Problems (9) and (10) forms the Riesz basis in the space W 2 s ( 0 , π ) .
Proof. 
Vector system
z n ( x ) = 2 π · β cos 2 n x + ε n · s i g n ( β 2 α 2 ) · α sin 2 n x α 2 + β 2 · 1 + ( 2 n ) 2 s , n Z
forms the complete orthonormal system in Hilbert space W 2 s ( 0 , π ) , , and vector system
y n ( x ) = 2 π · β cos λ n x + ε n · s i g n ( β 2 α 2 ) · α sin λ n x α 2 + β 2 · 1 + ( 2 n ) 2 s , n Z
by virtue of Lemma 3 satisfying the theorem conditions by R. Paley and N. Wiener (see p. 224, [39]). This theorem implies that system of vectors { y n ( x ) } n Z forms the Riesz basis in space W 2 s ( 0 , π ) .
Lemma 5.
Operator
L y = y
with domain
D ( L ) = { y ( x ) : y ( x ) C 2 ( 0 , π ) C 1 [ 0 , π ] , y L 2 ( 0 , π ) ,
α y ( 0 ) + β y ( π ) = 0 , β y ( 0 ) + α y ( 0 ) = 0 }
is a symmetric operator in class L 2 ( 0 , π ) .
Proof. 
Indeed, since functions f and g ¯ belong to domain D ( L ) , we have L f L 2 ( 0 , π ) , L g ¯ = L g ¯ L 2 ( 0 , π ) , and the second Green formula
G ( L u · v u · L v ) d x = G u n · v u · v n d s
at u = f and v = g ¯ takes the form
0 π ( L f · g ¯ f · L g ¯ ) d x = f ( x ) g ( x ) ¯ f ( x ) g ( x ) ¯ | 0 π .
Further, functions f and g ¯ satisfy the boundary conditions:
α f ( 0 ) + β f ( π ) = 0 , β f ( 0 ) + α f ( π ) = 0 , α g ( 0 ) ¯ + β g ( π ) ¯ = 0 , β g ( 0 ) ¯ + α g ( π ) ¯ = 0 .
By assumption, α 0 , β 0 . Therefore,
f ( 0 ) · g ( π ) ¯ f ( π ) · g ( 0 ) ¯ = 0
and
f ( 0 ) · g ( π ) ¯ f ( π ) · g ( 0 ) ¯ = 0 ,
i.e., f ( 0 ) · g ( π ) ¯ = f ( π ) · g ( 0 ) ¯ and f ( 0 ) · g ( π ) ¯ = f ( π ) · g ( 0 ) ¯ . For here, we obtain
f ( π ) f ( 0 ) = g ( π ) ¯ g ( 0 ) ¯ = k 0 = α β
and
f ( π ) f ( 0 ) = g ( π ) ¯ g ( 0 ) ¯ = k 1 = β α , k 0 · k 1 = 1 .
So, f ( π ) = k 0 f ( 0 ) , g ( π ) ¯ = k 0 g ( 0 ) ¯ è f ( π ) = k 1 f ( 0 ) , g ( π ) ¯ = k 1 g ( 0 ) ¯ . Thus,
0 π L f · g ¯ f · L g ¯ d x = f ( x ) · g ( x ) ¯ f ( x ) · g ( x ) ¯ | 0 π =
= f ( π ) · g ( π ) ¯ f ( π ) · g ( π ) ¯ + f ( 0 ) · g ( 0 ) ¯ f ( 0 ) · g ( 0 ) ¯ =
= f ( 0 ) · g ( 0 ) ¯ f ( 0 ) · g ( 0 ) ¯ + f ( 0 ) · g ( 0 ) ¯ f ( 0 ) · g ( 0 ) ¯ = 0 .
Thereby, ( L f , g ) = ( f , L g ) , f , g D ( L ) .
Theorem 1.
Let α 0 , β 0 , | α | | β | be real number, and
ρ = θ 2 + 2 θ 2 + ( φ + 1 ) s 1 2 · σ ( s ) < 1
where σ ( 0 ) = 1 2 , σ ( s ) = 1 at s > 0 , θ = 2 · max x [ 0 , π ] | e i φ x 1 | , λ n = 2 n + ε n · φ , φ = 1 π arccos 2 α β α 2 + β 2 , ε n = ε n = ± 1 at n Z . Then the system of eigenfunctions
y ¯ n ( x ) = 2 π · β cos λ n x + ε n · s i g n ( β 2 α 2 ) · α sin λ n x α 2 + β 2 · 1 + λ n 2 s , n Z ,
of spectral Problems (9) and (10) form the complete orthonormal system in Sobolev classes W 2 s ( 0 , π ) .
Proof. 
Symmetry of operator L implies that eigenfunctions { y ¯ n ( x ) } n Z of operator L, corresponding to the different eigenvalues, are orthogonal in classes L 2 ( 0 , π ) .
System of functions { D α y ¯ n ( x ) } n Z is also the system of eigenfunctions of a similar operator corresponding to different eigenvalues, which implies that functions of system { D α y ¯ n ( x ) } n Z are orthogonal in classes L 2 ( 0 , π ) .
As a result, we see that system of eigenfunctions { y ¯ n ( x ) } n Z of operator L, corresponding to different eigenvalues, are orthogonal in the Sobolev classes W 2 s ( 0 , π ) . It is known that, if a sequence of vectors { ψ n ( x ) } n Z forms the Riesz basis in a Hilbert space H , then system of vectors
ψ ^ n ( x ) n Z ψ ^ n ( x ) = ψ n ( x ) ψ n ( x ) , n Z
also forms the Riesz basis in H (see p. 374, [42]).
By virtue of Lemma 4, system of eigenvectors { y n ( x ) } n Z forms the Riesz basis in space W 2 s ( 0 , π ) . The orthogonality of this system implies that { y ¯ n ( x ) } n Z is a complete orthonormal system in the Sobolev classes W 2 s ( 0 , π ) .
Theorem 1 and the Sobolev embedding theorem imply the following corollaries.
Corollary 1.
Let α 0 , β 0 , | α | | β | be real numbers, and
ρ = θ 2 + 2 θ 2 + φ 2 < 1
where θ = 2 · max x [ 0 , π ] | e i φ x 1 | , λ n = 2 n + ε n · φ , φ = 1 π arccos 2 α β α 2 + β 2 , ε n = ε n = ± 1 at n Z . Then, the Fourier series for function f ( x ) W 2 1 ( 0 , π ) C [ 0 , π ] in orthonormal eigenfunctions
y ¯ n ( x ) = 2 π · β cos λ n x + ε n · s i g n ( β 2 α 2 ) · α sin λ n x α 2 + β 2 · 1 + λ n 2 , n Z
of spectral Problems (9) and (10) uniformly converges on segment [ 0 , π ] to function f ( x ) .
Corollary 2.
Let α 0 , β 0 , | α | | β | be real numbers, and
ρ = θ 2 + 2 θ 2 + ( φ + 1 ) s 1 2 < 1
where s > k , θ = 2 · max x [ 0 , π ] | e i φ x 1 | , λ n = 2 n + ε n · φ , φ = 1 π arccos 2 α β α 2 + β 2 , ε n = ε n = ± 1 at n Z . Then the Fourier series for function f ( x ) W 2 s ( 0 , π ) C k [ 0 , π ] in orthonormal eigenfunctions
y ¯ n ( x ) = 2 π · β cos λ n x + ε n · s i g n ( β 2 α 2 ) · α sin λ n x α 2 + β 2 · 1 + λ n 2 , n Z ,
of spectral Problems (9) and (10) converges in the norm of space C k [ 0 , π ] to function f ( x ) .
The scalar product in space W 2 s 1 , s 2 ( ( 0 , π ) × ( 0 , π ) ) is introduced in the following way:
( f ( x , y ) , g ( x , y ) ) W 2 s 1 , s 2 ( ( 0 , π ) × ( 0 , π ) ) = ( f ( x , y ) , g ( x , y ) ) L 2 ( ( 0 , π ) × ( 0 , π ) ) +
+ ( D x s 1 f ( x , y ) , D x s 1 g ( x , y ) ) L 2 ( ( 0 , π ) × ( 0 , π ) ) + ( D y s 2 f ( x , y ) , D y s 2 g ( x , y ) ) L 2 ( ( 0 , π ) × ( 0 , π ) ) +
+ ( D x , y s 1 , s 2 f ( x , y ) , D x , y s 1 , s 2 g ( x , y ) ) L 2 ( ( 0 , π ) × ( 0 , π ) ) .
Respectively, the norm in this space is introduced as follows:
f ( x , y ) W 2 s 1 , s 2 ( ( 0 , π ) × ( 0 , π ) ) 2 =
= f ( x , y ) L 2 ( ( 0 , π ) × ( 0 , π ) ) 2 + D x s 1 f ( x , y ) L 2 ( ( 0 , π ) × ( 0 , π ) ) 2 +
+ D y s 2 f ( x , y ) L 2 ( ( 0 , π ) × ( 0 , π ) ) 2 + D x , y s 1 , s 2 f ( x , y ) L 2 ( ( 0 , π ) × ( 0 , π ) ) 2 .
Lemma 6.
If { ψ m ( 1 ) ( x ) } and { ψ n ( 2 ) ( y ) } are complete orthonormal systems in W 2 s 1 ( 0 , π ) and W 2 s 2 ( 0 , π ) , , respectively, then the system of all products
f m n ( x , y ) = ψ m ( 1 ) ( x ) · ψ n ( 2 ) ( y )
is a complete orthonormal system in W 2 s 1 , s 2 ( ( 0 , π ) × ( 0 , π ) ) , where s 1 , s 2 = 1 , 2 , 3 , and x , y ( 0 , π )
Proof. 
By virtue of the Fubini theorem,
f m n ( x , y ) W 2 s 1 , s 2 ( ( 0 , π ) × ( 0 , π ) ) 2 = ψ m ( 1 ) ( x ) L 2 ( 0 , π ) 2 · ψ n ( 2 ) ( y ) L 2 ( 0 , π ) 2 +
+ D x s 1 ψ m ( 1 ) ( x ) L 2 ( 0 , π ) 2 · ψ n ( 2 ) ( y ) L 2 ( 0 , π ) 2 + ψ m ( 1 ) ( x ) L 2 ( 0 , π ) 2 · D y s 2 ψ n ( 2 ) ( y ) L 2 ( 0 , π ) 2 +
+ D x s 1 ψ m ( 1 ) ( x ) L 2 ( 0 , π ) 2 · D y s 2 ψ n ( 2 ) ( y ) L 2 ( 0 , π ) 2 =
= ψ m ( 1 ) ( x ) L 2 ( 0 , π ) 2 + D x s 1 ψ m ( 1 ) ( x ) L 2 ( 0 , π ) 2 · ψ n ( 2 ) ( y ) L 2 ( 0 , π ) 2 +
+ ψ m ( 1 ) ( x ) L 2 ( 0 , π ) 2 + D x s 1 ψ m ( 1 ) ( x ) L 2 ( 0 , π ) 2 · D y s 2 ψ n ( 2 ) ( y ) L 2 ( 0 , π ) 2 =
= ψ m ( 1 ) ( x ) L 2 ( 0 , π ) 2 + D x s 1 ψ m ( 1 ) ( x ) L 2 ( 0 , π ) 2 ·
· ψ n ( 2 ) ( y ) L 2 ( 0 , π ) 2 + D y s 2 ψ n ( 2 ) ( y ) L 2 ( 0 , π ) 2 = 1 .
If m m 1 or n n 1 , by the same theorem
( f m n ( x , y ) , f m 1 n 1 ( x , y ) ) W 2 s 1 , s 2 ( ( 0 , π ) × ( 0 , π ) ) =
= ( f m n ( x , y ) , f m 1 n 1 ( x , y ) ) L 2 ( ( 0 , π ) × ( 0 , π ) ) +
+ ( D x s 1 f m n ( x , y ) , D x s 1 f m 1 n 1 ( x , y ) ) L 2 ( ( 0 , π ) × ( 0 , π ) ) +
+ ( D y s 2 f m n ( x , y ) , D y s 2 f m 1 n 1 ( x , y ) ) L 2 ( ( 0 , π ) × ( 0 , π ) ) +
+ ( D x , y s 1 , s 2 f m n ( x , y ) , D x , y s 1 , s 2 f m 1 n 1 ( x , y ) ) L 2 ( ( 0 , π ) × ( 0 , π ) ) =
= ( ψ m ( 1 ) ( x ) , ψ m 1 ( 1 ) ( x ) ) L 2 ( 0 , π ) · ( ψ n ( 2 ) ( y ) , ψ n 1 ( 2 ) ( y ) ) L 2 ( 0 , π ) +
+ ( D x s 1 ψ m ( 1 ) ( x ) , D x s 1 ψ m 1 ( 1 ) ( x ) ) L 2 ( 0 , π ) · ( ψ n ( 2 ) ( y ) , ψ n 1 ( 2 ) ( y ) ) L 2 ( 0 , π ) +
+ ( ψ m ( 1 ) ( x ) , ψ m 1 ( 1 ) ( x ) ) L 2 ( 0 , π ) · ( D y s 2 ψ n ( 2 ) ( y ) , D y s 2 ψ n 1 ( 2 ) ( y ) ) L 2 ( 0 , π ) +
+ ( D x s 1 ψ m ( 1 ) ( x ) , D x s 1 ψ m 1 ( 1 ) ( x ) ) L 2 ( 0 , π ) · ( D y s 2 ψ n ( 2 ) ( y ) , D y s 2 ψ n 1 ( 2 ) ( y ) ) L 2 ( 0 , π ) =
= ( ( ψ m ( 1 ) ( x ) , ψ m 1 ( 1 ) ( x ) ) L 2 ( 0 , π ) + ( D x s 1 ψ m ( 1 ) ( x ) , D x s 1 ψ m 1 ( 1 ) ( x ) ) L 2 ( 0 , π ) ) ·
· ( ψ n ( 2 ) ( y ) , ψ n 1 ( 2 ) ( y ) ) L 2 ( 0 , π ) +
+ ( ( ψ m ( 1 ) ( x ) , ψ m 1 ( 1 ) ( x ) ) L 2 ( 0 , π ) + ( D x s 1 ψ m ( 1 ) ( x ) , D x s 1 ψ m 1 ( 1 ) ( x ) ) L 2 ( 0 , π ) ) ·
· ( D y s 2 ψ n ( 2 ) ( y ) , D y s 2 ψ n 1 ( 2 ) ( y ) ) L 2 ( 0 , π ) =
= ( ( ψ m ( 1 ) ( x ) , ψ m 1 ( 1 ) ( x ) ) L 2 ( 0 , π ) + ( D x s 1 ψ m ( 1 ) ( x ) , D x s 1 ψ m 1 ( 1 ) ( x ) ) L 2 ( 0 , π ) ) ·
· ( ( ψ n ( 2 ) ( y ) , ψ n 1 ( 2 ) ( y ) ) L 2 ( 0 , π ) + ( D y s 2 ψ n ( 2 ) ( y ) , D y s 2 ψ n 1 ( 2 ) ( y ) ) L 2 ( 0 , π ) ) = 0
since scalar product ( f m n ( x , y ) , f m 1 n 1 ( x , y ) ) W 2 s 1 , s 2 ( ( 0 , π ) × ( 0 , π ) ) of two variables exist on Π = ( 0 , π ) × ( 0 , π ) . Let us prove the completeness of system { f m n ( x , y ) } . Assume that there exists a function f ( x , y ) in W 2 s 1 , s 2 ( ( 0 , π ) × ( 0 , π ) ) that is orthogonal to all functions f m n ( x , y ) . Set
F m ( y ) = ( f ( x , y ) , ψ m ( 1 ) ( x ) ) W 2 s 1 ( 0 , π ) .
It is easy to see, that function F m ( y ) belongs to class W 2 s 2 ( 0 , π ) . That’s why for any n , m again applying the Fubini theorem, we obtain
( F m ( y ) , ψ n ( 2 ) ( y ) ) W 2 s 2 ( 0 , π ) = ( f ( x , y ) , f m n ( x , y ) ) W 2 s 1 , s 2 ( ( 0 , π ) × ( 0 , π ) ) = 0 .
By completeness of system ψ n ( 2 ) ( y ) , for almost all y
F m ( y ) = 0 .
But then, for almost every y , , equalities
( f ( x , y ) , ψ m ( 1 ) ( x ) ) W 2 s 1 ( 0 , π ) = 0
hold for all m . Completeness of system ψ m ( 1 ) ( x ) implies that, for almost all y, the set of those x , for which
f ( x , y ) 0 ,
has the measure zero. By virtue of the Fubini theorem, this means that, on Π = ( 0 , π ) × ( 0 , π ) , function f ( x , y ) is zero almost everywhere. □
The scalar product in space W 2 s 1 , s 2 , , s N ( Π ) is introduced in the following way:
( f ( x ) , g ( x ) ) W 2 s 1 , s 2 , , s N ( Π ) = ( f ( x ) , g ( x ) ) L 2 ( Π ) +
+ j 1 = 1 N ( D x j 1 s j 1 f ( x ) , D x j 1 s j 1 g ( x ) ) L 2 ( Π ) +
+ 1 j 1 < j 2 N ( D x j 1 s j 1 D x j 2 s j 2 f ( x ) , D x j 1 s j 1 D x j 2 s j 2 g ( x ) ) L 2 ( Π ) + +
+ 1 j 1 < j 2 < < j N N ( D x j 1 s j 1 D x j 2 s j 2 D x j N s j N f ( x ) , D x j 1 s j 1 D x j 2 s j 2 D x j N s j N g ( x ) ) L 2 ( Π ) .
Respectively, the norm in this space is introduced as follows:
f ( x ) W 2 s 1 , s 2 , , s N ( Π ) 2 = f ( x ) L 2 ( Π ) 2 + j 1 = 1 N D x j 1 s j 1 f ( x ) L 2 ( Π ) 2 +
+ 1 j 1 < j 2 N D x j 1 s j 1 D x j 2 s j 2 f ( x ) L 2 ( Π ) 2 +
+ + 1 j 1 < j 2 < < j N N D x j 1 s j 1 D x j 2 s j 2 D x j N s j N f ( x ) L 2 ( Π ) 2 .
Using the method of mathematical induction and Lemma 6, we obtain the following:
Lemma 7.
If { ψ m 1 ( 1 ) ( x 1 ) } , , { ψ m N ( N ) ( x N ) } are complete orthonormal systems in spaces W 2 s 1 ( 0 , π ) , …, W 2 s N ( 0 , π ) , respectively, then system of all products
f m ( x ) = f m 1 m N ( x 1 , , x N ) = ψ m 1 ( 1 ) ( x 1 ) · · ψ m N ( N ) ( x N )
is a complete orthonormal system in W 2 s 1 , s 2 , , s N ( Π ) .
Let us apply Lemma 7 to our orthonormal systems. In space W 2 s 1 , s 2 , , s N ( Π ) of functions of N variables f ( x ) = f ( x 1 , , x N ) all products
v m 1 m N ( x 1 , , x N ) = y ¯ m 1 ( 1 ) ( x 1 ) · · y ¯ m N ( N ) ( x N )
form the complete orthonormal system. Here,
y ¯ m j ( j ) ( x j ) = 2 π · β j cos λ m j x j + ε m j · s i g n ( β j 2 α j 2 ) · α j sin λ m j x j α j 2 + β j 2 · 1 + λ m j 2 s j , m j Z
at 1 j p ,
y ¯ m j ( j ) ( x j ) = 1 π 1 1 + 2 m j 2 s j exp ( i 2 m j x j ) , m j Z
at p + 1 j q ,
y ¯ m j ( j ) ( x j ) = 2 π 1 1 + m j 2 s j sin ( m j x j ) , m j N
at q + 1 j N .
Thus, the following statement is valid:
Theorem 2.
Let α j 0 , β j 0 , | α j | | β j | be real numbers at every 1 j p , and
ρ = max 1 j p θ j 2 + 2 θ j 2 + ( φ j + 1 ) s j 1 2 · σ ( s j ) < 1
where σ ( 0 ) = 1 2 , σ ( s j ) = 1 , at s j > 0 , θ j = 2 · max x [ 0 , π ] | e i φ j x 1 | , λ m j = 2 m j + ε m j · φ j , φ j = 1 π arccos 2 α j β j α j 2 + β j 2 , ε m j = ε m j = ± 1 at m j Z . Then, system of eigenfunctions
{ v m 1 m N ( x 1 , , x N ) } ( m 1 , , m p ) Z p , ( m p + 1 , , m q ) Z q p , ( m q + 1 , , m N ) N N q =
= j = 1 p 2 π β j cos λ m j x j + ε m j s i g n ( β j 2 α j 2 ) · α j sin λ m j x j α j 2 + β j 2 · 1 + λ m j 2 s j ( m 1 , , m p ) Z p ×
× j = p + 1 q 1 π 1 1 + 2 m j 2 s j e x p ( i 2 m j x j ) ( m p + 1 , , m q ) Z q p ×
× j = q + 1 N 2 π 1 1 + m j 2 s j sin ( m j x j ) ( m q + 1 , , m N ) N N q
of spectral Problems (7) and (8) forms the complete orthonormal system in Sobolev classes W 2 s 1 , s 2 , , s N ( Π ) .
Corollary 3.
Let α j 0 , β j 0 , | α j | | β j | be real numbers at every 1 j p , and
ρ = max 1 j p θ j 2 + 2 θ j 2 + ( φ j + 1 ) s j 1 2 · σ ( s j ) < 1
where σ ( 0 ) = 1 2 , σ ( s j ) = 1 at s j > 0 , θ j = 2 · max x [ 0 , π ] | e i φ j x 1 | , λ m j = 2 m j + ε m j · φ j , φ j = 1 π arccos 2 α j β j α j 2 + β j 2 , ε m j = ε m j = ± 1 at m j Z , s j > k + N 2 , k 0 , k Z . Then, the Fourier series for function f ( x ) W 2 s 1 , s 2 , , s N ( Π ) C k ( Π ) in orthonormal eigenfunctions
{ v m 1 m N ( x 1 , , x N ) } ( m 1 , , m p ) Z p , ( m p + 1 , , m q ) Z q p , ( m q + 1 , , m N ) N N q =
= j = 1 p 2 π β j cos λ m j x j + ε m j s i g n ( β j 2 α j 2 ) · α j sin λ m j x j α j 2 + β j 2 · 1 + λ m j 2 s j ( m 1 , , m p ) Z p ×
× j = p + 1 q 1 π 1 1 + 2 m j 2 s j exp ( i 2 m j x j ) ( m p + 1 , , m q ) Z q p ×
× j = q + 1 N 2 π 1 1 + m j 2 s j sin ( m j x j ) ( m q + 1 , , m N ) N N q
of spectral Problems (7) and (8) converges in the norm of space C k ( Π ) to function f ( x ) .
The proof of Corollary 3 is carried out using Theorem 2 and the Sobolev embedding theorem.
The following are true:

4. Main Results

In this section, we give the most general case of the works done in [17].
Theorem 3.
Let α j 0 , β j 0 , | α j | | β j | be real numbers at every 1 j p , and
ρ = max 1 j p θ j 2 + 2 θ j 2 + ( φ j + 1 ) s j 1 2 · σ ( s j ) < 1
where σ ( 0 ) = 1 2 , σ ( s j ) = 1 at s j > 0 , θ j = 2 · max x [ 0 , π ] | e i φ j x 1 | , λ m j = 2 m j + ε m j · φ j , φ j = 1 π arccos 2 α j β j α j 2 + β j 2 , ε m j = ε m j = ± 1 at m j Z , s j > k + N 2 , k 0 , k Z and φ j ( x ) W 2 s 1 + j N 2 , s 2 + j N 2 , , s N + j N 2 ( Π ) , f ( x , t ) W 2 s 1 , s 2 , , s N , s N + 1 ( Π × ( 0 , + ) ) . Then, the solution of problems (4)–(6) exists, it is unique, and is represented in the form of series
u ( x , t ) = m 1 = m q = m q + 1 = 1 m N = 1 j = 1 n φ j , ( m 1 m N ) t α j E α , α j + 1 ( μ m 1 m N · t α ) + + 0 t ( t τ ) α 1 · E α , α [ μ m 1 m N ( t τ ) α ] f m 1 m N ( τ ) d τ · v m 1 m N ( x 1 , , x N )
where coefficients are determined in the following way:
E α , α j + 1 ( μ m 1 m N · t α ) = i = 0 ( μ m 1 m N · t α ) i Γ ( α i + α j + 1 ) ,
E α , α μ m 1 m N · ( t τ ) α = i = 1 ( μ m 1 m N ) i 1 · ( t τ ) α ( i 1 ) Γ ( α · i ) ,
f ( x , t ) = m 1 = m q = m q + 1 = 1 m N = 1 f m 1 m N ( t ) · v m 1 m N ( x 1 , , x N ) ,
φ j ( x ) = m 1 = m q = m q + 1 = 1 m N = 1 φ j , ( m 1 m N ) · v m 1 m N ( x 1 , , x N ) ,
j = 1 , 2 , , n , μ m 1 m N = λ m 1 2 + + λ m N 2 .
Proof. 
Since system of eigenfunctions
{ v m 1 m N ( x 1 , , x N ) } ( m 1 , , m p ) Z p , ( m p + 1 , , m q ) Z q p , ( m q + 1 , , m N ) N N q
of spectral Problems (7) and (8) forms the complete orthonormal system in Sobolev classes W 2 s 1 , s 2 , , s N ( Π ) , any function from class W 2 s 1 , s 2 , , s N ( Π ) can be represented as a convergent Fourier series in this system. For any t > 0 , expand solution u ( x , t ) of Problems (4)–(6) into the Fourier series in eigenfunctions
{ v m 1 m N ( x 1 , , x N ) } ( m 1 , , m p ) Z p , ( m p + 1 , , m q ) Z q p , ( m q + 1 , , m N ) N N q
of spectral Problems (4) and (5):
u ( x , t ) = m 1 = m q = m q + 1 = 1 m N = 1 T m 1 m N ( t ) · v m 1 m N ( x ) ,
T m 1 m N ( t ) = ( u ( x , t ) , v m 1 m N ( x ) ) .
By virtue of Problems (4) and (5), unknown functions T m 1 m N ( t ) must satisfy equation
D 0 t α T m 1 m N ( t ) + μ m 1 m N T m 1 m N ( t ) = f m 1 m N ( t ) , l 1 < α l , l N
with initial conditions
lim t 0 D 0 t α k T m 1 m N ( t ) = φ k , m 1 m N , k = 1 , 2 , , l , μ m 1 m N = λ m 1 2 + + λ m N 2 .
The solution of Cauchy Problems (13) and (14) has the form
T m 1 m N ( t ) = j = 1 n φ j , ( m 1 m N ) t α j E α , α j + 1 ( μ m 1 m N · t α ) +
+ 0 t ( t τ ) α 1 · E α , α [ μ m 1 m N ( t τ ) α ] f m 1 m N ( τ ) d τ
where coefficients are determined as follows:
E α , α j + 1 ( μ m 1 m N · t α ) = i = 0 ( μ m 1 m N · t α ) i Γ ( α i + α j + 1 ) ,
E α , α μ m 1 m N · ( t τ ) α = i = 1 ( μ m 1 m N ) i 1 · ( t τ ) α ( i 1 ) Γ ( α · i ) ,
f ( x , t ) = m 1 = m q = m q + 1 = 1 m N = 1 f m 1 m N ( t ) · v m 1 m N ( x 1 , , x N ) ,
φ j ( x ) = m 1 = m q = m q + 1 = 1 m N = 1 φ j , ( m 1 m N ) · v m 1 m N ( x 1 , , x N ) , j = 1 , 2 , , n .
After substituting Problem (15) into Problem (12), we obtain the unique solution of Problems (4)–(6) in the form of Series (8).
Let ν > 1 . Consider mixed Problems (4)–(6). If we look for a solution u ( x , t ) to Problems (4)–(6) in the form of Fourier series expansion
u ( x , t ) = m 1 = m q = m q + 1 = 1 m N = 1 T m 1 m N ( t ) · v m 1 m N ( x ) ,
where are T m 1 m N ( t ) = ( u ( x , t ) , v m 1 m N ( x ) ) are the coefficients of the series, { v m 1 m N } is the system of eigenfunctions of spectral Problems (7) and (8).
Differential operator ( Δ ) ν , generated by a differential expression l ( ν ) ( v ( x ) ) = ( Δ ) ν v ( x ) with domain definition
D ( Δ ) ν = { v ( x ) : v ( x ) C 2 ν ( Π ) C 2 ν 1 ( Π ¯ ) , l ( ν ) ( v ( x ) ) L 2 ( Π ) }
satisfies Condition (8).
Similarly, as Lemma 5, it can be shown that operator ( Δ ) ν , is a symmetric and positive operator in space L 2 ( Π ) . The eigenvalues of Problems (7) and (8) μ m 1 m N 0 , and each μ μ m 1 m N = λ m 1 2 + λ m 1 2 ν corresponds to an eigenvalue of Problems (9) and (10), and the eigenfunctions { v m 1 m N ( x ) } of Problems (7) and (8) and eigenfunctions { y m 1 m N ( x ) } of Problems (9) and (10) coincide, i.e.,
v m 1 m N ( x ) y m 1 m N ( x ) .
Therefore, the following theorem is valid:
Theorem 4.
Let α j 0 , β j 0 , | α j | | β j | be real numbers at every 1 j p , and
ρ = max 1 j p θ j 2 + 2 θ j 2 + ( φ j + 1 ) s j 1 2 · σ ( s j ) < 1
where σ ( 0 ) = 1 2 , σ ( s j ) = 1 at s j > 0 , θ j = 2 · max x [ 0 , π ] | e i φ j x 1 | , λ m j = 2 m j + ε m j · φ j , φ j = 1 π arccos 2 α j β j α j 2 + β j 2 , ε m j = ε m j = ± 1 at m j Z , s j > ( k + N 2 ) ν , k 0 , k Z and φ j ( x ) W 2 ( s 1 + j N 2 ) ν , ( s 2 + j N 2 ) ν , , ( s N + j N 2 ) ν ( Π ) , f ( x , t ) W 2 s 1 , s 2 , , s N , s N + 1 ( Π × ( 0 , + ) ) . Then the solution of Problems (4)–(6) exists, it is unique, and is represented in the form of series
u ( x , t ) = m 1 = m q = m q + 1 = 1 m N = 1 j = 1 n φ j , ( m 1 m N ) t α j E α , α j + 1 ( μ m 1 m N · t α ) + + 0 t ( t τ ) α 1 · E α , α [ μ m 1 m N ( t τ ) α ] f m 1 m N ( τ ) d τ · v m 1 m N ( x 1 , , x N )
where coefficients are determined in the following way:
E α , α j + 1 ( μ m 1 m N · t α ) = i = 0 ( μ m 1 m N · t α ) i Γ ( α i + α j + 1 ) ,
E α , α μ m 1 m N · ( t τ ) α = i = 1 ( μ m 1 m N ) i 1 · ( t τ ) α ( i 1 ) Γ ( α · i ) ,
f ( x , t ) = m 1 = m q = m q + 1 = 1 m N = 1 f m 1 m N ( t ) · v m 1 m N ( x 1 , , x N ) ,
φ j ( x ) = m 1 = m q = m q + 1 = 1 m N = 1 φ j , ( m 1 m N ) · v m 1 m N ( x 1 , , x N ) , j = 1 , 2 , , n ,
μ m 1 m N = λ m 1 2 + + λ m N 2 ν .

5. Conclusions

In this paper, we considered questions on the unique solvability of a mixed problem for a partial differential equation of high order with fractional Riemann-Liouville derivatives with respect to time, and with Laplace operators with spatial variables and with nonlocal boundary conditions in Sobolev classes. The solution was found in the form of a series of expansions in eigenfunctions of the Laplace operator with nonlocal boundary conditions. Initial and boundary problems with fractional Riemann-Liouville derivatives with respect to time have many applications [13]. In connection to this, we chose the fractional Riemann-Liouville derivative, although we could consider other types of fractional derivatives.

Author Contributions

Methodology, O.A.İ.; Resources, S.G.K.; Writing—original draft, S.Q.O.; Writing—review editing, H.M.B.

Funding

This research received no external funding.

Acknowledgments

The authors gratefully thank the referees for their several suggestions and comments.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Birkhoff, G.D. On the asymptotic character of the solutions of certain linear differential equations containing a parameter. Trans. Am. Math. Soc. 1908, 9, 219–231. [Google Scholar] [CrossRef]
  2. Birkhoff, G.D. Boundary value and expansion problems of ordinary linear differential equations. Trans. Am. Math. Soc. 1908, 9, 373–395. [Google Scholar] [CrossRef]
  3. Birkhoff, G.D. Existence and oscillation theorem for a certain boundary value problem. Trans. Am. Math. Soc. 1909, 10, 259–270. [Google Scholar] [CrossRef]
  4. Titchmarsh, E.C. Eigenfunction Expansions; Oxford University Press: Oxford, UK, 1953 and 1958; Volume I. [Google Scholar]
  5. Titchmarsh, E.C. Eigenfunction Expansions; Oxford University Press: Oxford, UK, 1953 and 1958; Volume II. [Google Scholar]
  6. Titchmarsh, E.C. On the asymptotic distribution of eigenvalues. Q. J. Math. 1954, 5, 228–240. [Google Scholar] [CrossRef]
  7. Titchmarsh, E.C. On the eigenvalues in problems with spherical symmetry. Proc. R. Soc. A 1958, 245, 147–155. [Google Scholar]
  8. Titchmarsh, E.C. On the eigenvalues in problems with spherical symmetry. II. Proc. R. Soc. A 1959, 251, 46–54. [Google Scholar]
  9. Titchmarsh, E.C. On the eigenvalues in problems with spherical symmetry. III. Proc. R. Soc. A 1959, 252, 436–444. [Google Scholar]
  10. Levitan, B.M. Razlozenie po Sobstvennym Funkciyam Differencialnyh Uravnenii Vtorogo Poryadka; Expansion in Characteristic Functions of Differential Equations of the Second Order; Gosudarstv. Izdat. Tehn.-Teor. Lit.: Leningrad, Moscow, Russia, 1950; p. 159. (In Russian) [Google Scholar]
  11. Levitan, B.M. On expansion in eigenfunctions of the Laplace operator. Doklady Akad. Nauk SSSR 1954, 35, 267–316. [Google Scholar]
  12. Levitan, B.M. On expansion in eigenfunctions of the Schrödinger operator in the case of a potential increasing without bound. Dokl. Akad. Nauk SSSR 1955, 103, 191–194. [Google Scholar]
  13. Nigmatullin, R.R. The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Status Solidi B 1986, 133, 425–430. [Google Scholar] [CrossRef]
  14. Kochubey, A.N. Cauchy problem for evolutionary equations of fractional order. Differ. Equ. 1989, 25, 1359–1368. [Google Scholar]
  15. Kochubey, A.N. Fractional diffusion. Differ. Equ. 1990, 26, 660–670. [Google Scholar]
  16. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Integrals and Derivatives of Fractional Order and Some of Their Applications; Science and Technology Publishing: Minsk, Belarus, 1987; p. 688. [Google Scholar]
  17. Kasimov, S.G.; Ataev, S.K. On solvability of the mixed problem for a partial equation of a fractional order with Laplace operators and nonlocal boundary conditions in the Sobolev classes. Uzb. Math. J. 2018, 1, 73–89. [Google Scholar] [CrossRef]
  18. Srivastava, H.M.; El-Sayed, A.M.A.; Gaafar, F.M. A class of nonlinear boundary value problems for an arbitrary fractional-order differential equation with the Riemann-Stieltjes functional integral and infinite-point boundary conditions. Symmetry 2018, 10, 508. [Google Scholar] [CrossRef]
  19. Jiang, J.; Feng, Y.; Li, S. Exact solutions to the fractional differential equations with mixed partial derivatives. Axioms 2018, 7, 10. [Google Scholar] [CrossRef]
  20. Asawasamrit, S.; Ntouyas, S.K.; Tariboon, J.; Nithiarayaphaks, W. Coupled systems of sequential caputo and hadamard fractional differential equations with coupled separated boundary conditions. Symmetry 2018, 10, 701. [Google Scholar] [CrossRef]
  21. Bazhlekova, E. Subordination principle for a class of fractional order differential equations. Mathematics 2015, 3, 412–427. [Google Scholar] [CrossRef]
  22. Bulut, H.; Yel, G.; Baskonus, H.M. An application of improved bernoulli sub-equation function method to the nonlinear time-fractional burgers equation. Turk. J. Math. Comput. Sci. 2016, 5, 1–17. [Google Scholar]
  23. Baskonus, H.M.; Bulut, H. On the Numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method. Open Math. 2015, 13, 547–556. [Google Scholar] [CrossRef]
  24. Kumar, D.; Singh, J.; Baskonus, H.M.; Bulut, H. An effective computational approach for solving local fractional telegraph equations. Nonlinear Sci. Lett. A Math. Phys. Mech. 2017, 8, 200–206. [Google Scholar]
  25. Gencoglu, M.T.; Baskonus, H.M.; Bulut, H. Numerical simulations to the nonlinear model of interpersonal Relationships with time fractional derivative. AIP Conf. Proc. 2017, 1798, 1–9. [Google Scholar]
  26. Ravichandran, C.; Jothimani, K.; Baskonus, H.M.; Valliammal, N. New results on nondensely characterized integrodifferential equations with fractional order. Eur. Phys. J. Plus 2018, 133, 1–10. [Google Scholar] [CrossRef]
  27. Bulut, H.; Sulaiman, T.A.; Baskonus, H.M. Dark, bright optical and other solitons with conformable space-time fractional second-order spatiotemporal dispersion. Opt.-Int. J. Light Electron Opt. 2018, 163, 1–7. [Google Scholar] [CrossRef]
  28. Dokuyucu, M.A.; Celik, E.; Bulut, H.; Baskonus, H.M. Cancer treatment model with the Caputo-Fabrizio fractional derivative. Eur. Phys. J. Plus 2018, 133, 1–7. [Google Scholar] [CrossRef]
  29. Esen, A.; Sulaiman, T.A.; Bulut, H.; Baskonus, H.M. Optical solitons to the space-time fractional (1+1)-dimensional coupled nonlinear Schrödinger equation. Opt.-Int. J. Light Electron Opt. 2018, 167, 150–156. [Google Scholar] [CrossRef]
  30. Yavuz, M.; Ozdemir, N.; Baskonus, H.M. Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel. Eur. Phys. J. Plus 2018, 133, 1–12. [Google Scholar] [CrossRef]
  31. Bulut, H.; Kumar, D.; Singh, J.; Swroop, R.; Baskonus, H.M. Analytic study for a fractional model of HIV infection of CD4+TCD4+T lymphocyte cells. Math. Nat. Sci. 2018, 2, 33–43. [Google Scholar] [CrossRef]
  32. Bulut, H.; Sulaiman, T.A.; Baskonus, H.M.; Rezazadeh, H.; Eslami, M.; Mirzazadeh, M. Optical solitons and other solutions to the conformable space-time fractional Fokas-Lenells equation. Opt.-Int. J. Light Electron Opt. 2018, 172, 20–27. [Google Scholar] [CrossRef]
  33. Veeresha, P.; Prakasha, D.G.; Baskonus, H.M. New numerical surfaces to the mathematical model of cancer chemotherapy effect in caputo fractional derivatives. AIP Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 1–14. [Google Scholar] [CrossRef] [PubMed]
  34. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies Volume 204; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherland, 2006. [Google Scholar]
  35. Naimark, M.A. Linear Differential Operators; Nauka: Moscow, Russia, 1969. [Google Scholar]
  36. Levitan, B.M.; Sargsyan, I.S. Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators; English translation, Translation of Mathematical Monographs; Nauka: Moscow, Russia, 1979; American Mathematical Society: Providence, RI, USA, 1972; Volume 39. [Google Scholar]
  37. Levitan, B.M.; Sargsyan, I.S. Sturm-Liouville and Dirac Operators; Nauka: Moscow, Russia, 1988. [Google Scholar]
  38. Kostychenko, A.G.; Sargsyan, I.S. Distribution of Eigenvalues: Selfadjoint Ordinary Differential Operators; Nauka: Moscow, Russia, 1979. [Google Scholar]
  39. Riesz, F.; Szökefalvi-Nagy, B. Functional Analysis; Frederick Ungar Publiching Co.: New York, NY, USA, 1955. [Google Scholar]
  40. Sadovnichiy, V.A. Theory of Operators; MSU Press: Moscow, Russia, 1986. [Google Scholar]
  41. Kasimov, S.G.; Ataev, S.K. On completeness of the system of orthonormal vectors of a generalized spectral problem. Uzb. Math. J. 2009, 2, 101–111. [Google Scholar]
  42. Gokhberg, I.T.; Krein, M.G. Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space; English translation, Translation of Mathematical Monographs; Nauka: Moscow, Russia, 1965; American Mathematical Society: Providence, RI, USA, 1969. [Google Scholar]

Share and Cite

MDPI and ACS Style

İlhan, O.A.; Kasimov, S.G.; Otaev, S.Q.; Baskonus, H.M. On the Solvability of a Mixed Problem for a High-Order Partial Differential Equation with Fractional Derivatives with Respect to Time, with Laplace Operators with Spatial Variables and Nonlocal Boundary Conditions in Sobolev Classes. Mathematics 2019, 7, 235. https://doi.org/10.3390/math7030235

AMA Style

İlhan OA, Kasimov SG, Otaev SQ, Baskonus HM. On the Solvability of a Mixed Problem for a High-Order Partial Differential Equation with Fractional Derivatives with Respect to Time, with Laplace Operators with Spatial Variables and Nonlocal Boundary Conditions in Sobolev Classes. Mathematics. 2019; 7(3):235. https://doi.org/10.3390/math7030235

Chicago/Turabian Style

İlhan, Onur Alp, Shakirbay G. Kasimov, Shonazar Q. Otaev, and Haci Mehmet Baskonus. 2019. "On the Solvability of a Mixed Problem for a High-Order Partial Differential Equation with Fractional Derivatives with Respect to Time, with Laplace Operators with Spatial Variables and Nonlocal Boundary Conditions in Sobolev Classes" Mathematics 7, no. 3: 235. https://doi.org/10.3390/math7030235

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop