Fixed Point Results for Multi-Valued Contractions in b−Metric Spaces and an Application
Abstract
:1. Introduction
- (i)
- if and only if
- (ii)
- (iii)
- (i)
- converges to a point if ,
- (ii)
- is Cauchy if, for each , there is some such that for all ,
- (iii)
- is said complete if any Cauchy sequence is convergent in X.
- (i)
- for any ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- for any ;
- (iiv)
- ;
- (vi)
- ;
- (vii)
- ;
- (viii)
- .
- (a)
- ;
- (b)
- implies that either or .
- (a)
- for all ;
- (b)
- for all , where ;
- (c)
- for all , where is continuous;
- (d)
- for all , where is a continuous function such that if and only if ;
- (e)
- with , for all ;
- (f)
- with , for all .
2. Main Results
- (i)
- f is admissible of type S;
- (ii)
- there exist and such that ;
- (iii)
- is a closed subset of .
- (i)
- f is admissible of type S;
- (ii)
- there exist and such that ;
- (iii)
- f is upper semi-continuous.
- (i)
- f is admissible of type S and ψ is continuous;
- (ii)
- there exist and such that ;
- (iii)
- if is a sequence in X with and for all then for all
- (i)
- f is admissible of type S;
- (ii)
- there exist and such that ;
- (iii)
- the graph of f is closed.
- (i)
- f is admissible of type S and ψ is continuous;
- (ii)
- there exist and such that ;
- (iii)
- is a sequence in X with and for all then for all
- (i)
- , implies ;
- (ii)
- there exists such that ;
- (iii)
- the graph of f is closed.
- (i)
- , implies . Also, ψ is continuous;
- (ii)
- there exists such that ;
- (iii)
- if for , the sequence in X is such that and for each integer then for each
3. Application
- (i)
- there exists such that if for , we have for each ,
- (ii)
- , implies ;
- (iii)
- there exists such that ;
- (iv)
- if (where is arbitrary in X) is a sequence in X with and for each integer then for each
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | linear dichroism |
References
- Aydi, H.; Shatanawi, W.; Vetro, C. On generalized weak G-contraction mapping in G-metric spaces. Comput. Math. Appl. 2011, 62, 4223–4229. [Google Scholar] [CrossRef]
- Dukic, D.; Kadelburg, Z.; Radenovic, S. Fixed point of Geraghty-type mappings in various generalized metric spaces. Abstr. Appl. Anal. 2011. [Google Scholar] [CrossRef]
- Aydi, H.; Bota, M.F.; Karapinar, E.; Moradi, S. A common fixed point for weak ϕ-contractions on b-metric spaces. Fixed Point Theory 2012, 13, 337–346. [Google Scholar]
- Aydi, H.; Felhi, A.; Sahmim, S. Common fixed points via implicit contractions on b-metric-like spaces. J. Nonlinear Sci. Appl. 2017, 10, 1524–1537. [Google Scholar] [CrossRef]
- Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W.; Alsamir, H. Common fixed points for pairs of triangular α-admissible mappings. J. Nonlinear Sci. Appl. 2017, 10, 6192–6204. [Google Scholar] [CrossRef]
- Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W.; Abodayeh, K.; Alsamir, H. Fixed point for mappings under contractive condition based on simulation functions and cyclic (α,β)-admissibility. J. Math. Anal. 2018, 9, 38–59. [Google Scholar] [CrossRef]
- Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W. Fixed Point Results for Geraghty Type Generalized F-contraction for Weak α-admissible Mapping in Metric-like Spaces. Eur. J. Pure Appl. Math. 2018, 11, 702–716. [Google Scholar] [CrossRef]
- Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W.; Alsamir, H. Common Fixed Point Theorems for Generalized Geraghty (α,ψ,ϕ)-Quasi Contraction Type Mapping in Partially Ordered Metric-like Spaces. Axioms 2018, 7, 74. [Google Scholar] [CrossRef]
- Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef]
- Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W. Fixed Point Theorems for (α,k,θ)-Contractive Multi-Valued Mapping in b-Metric Space and Applications. Int. J. Math. Comput. Sci. 2019, 14, 263–283. [Google Scholar]
- Ciric, L.B.; Samet, B.; Aydi, H.; Vetro, C. Common fixed points of generalized contractions on partial metric spaces and an application. Appl. Math. Comput. 2011, 218, 2398–2406. [Google Scholar]
- Meir, A.; Keeler, E. A theorem on contraction mappings. J. Math. Anal. Appl. 1969, 28, 326–329. [Google Scholar] [CrossRef] [Green Version]
- Shatanawi, W.; Postolache, M. Common fixed point results for mappings under nonlinear contraction of cyclic form in ordered metric spaces. Fixed Point Theory Appl. 2013, 2013. [Google Scholar] [CrossRef]
- Nadler, J. Multi-valued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef] [Green Version]
- Aydi, H.; Abbas, M.; Vetro, C. Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces. Topol. Appl. 2012, 159, 3234–3242. [Google Scholar] [CrossRef]
- Berinde, V.; Pacurar, M. The role of the Pompeiou Hausdorff metric in fixed point theory. Creat. Math. Inform. 2013, 22, 143–150. [Google Scholar]
- De la Sen, M.; Singh, S.L.; Gordji, M.E.; Ibeas, A.; Agarwal, R.P. Best proximity and fixed point results for cyclic multivalued mappings under a generalized contractive condition. Fixed Point Theory Appl. 2013, 2013, 324. [Google Scholar] [CrossRef] [Green Version]
- Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 30, 5–11. [Google Scholar]
- Aydi, H.; Karapinar, E.; Bota, M.F.; Mitrović, S. A fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, 88. [Google Scholar] [CrossRef]
- Czerwick, S.; Dlutek, K.; Singh, S.L. Round-off stability of iteration procedures for set-valued operators in b-metric spaces. J. Nat. Phys. Sci. 2001, 11, 87–94. [Google Scholar]
- Karapinar, E.; Czerwik, S.; Aydi, H. (α,ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Funct. Spaces 2018, 2018. [Google Scholar] [CrossRef]
- Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W.; Alsamir, H. Some fixed point results for the cyclic (α,β)-(k,θ)-multi-valued mappings in metric space. J. Phys. Conf. Ser. 2018. [Google Scholar] [CrossRef]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α,ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef]
- Sintunavarat, W. Nonlinear integral equations with new admissibility types in b-metric spaces. J. Fixed Point Theory Appl. 2016, 18, 397–416. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B.; Vetro, C.; Vetro, F. Fixed Points for Multi-valued Mappings in b-Metric Spaces. Abstr. Appl. Anal. 2015, 2015. [Google Scholar] [CrossRef]
- Felhi, A.; Aydi, H.; Zhang, D. Fixed points for α-admissible contractive mappings via simulation functions. J. Nonlinear Sci. Appl. 2016, 9, 5544–5560. [Google Scholar] [CrossRef]
- Karapinar, E.; Samet, B. Generalized α-ψ-contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012, 2012. [Google Scholar] [CrossRef]
- Ali, M.U.; Kamran, T.; Karapinar, E. (α,ψ,ξ)-contractive multi-valued mappings. Fixed Point Theory Appl. 2014, 7. [Google Scholar] [CrossRef]
- Karapinar, E.; Kumam, P.; Salimi, P. On α,ψ-Meir-Keeler contractive mappings. Fixed Point Theory Appl. Abstr. Appl. Anal. 2013, 2013. [Google Scholar] [CrossRef]
- Mohammadi, B.; Rezapour, S.; Shahzad, N. Some results on fixed points of α-ψ-Ciric generalized multifunctions. Fixed Point Theory Appl. 2013, 2013. [Google Scholar] [CrossRef]
- Ansari, A.H. Note on φ-ψ-contractive type mappings and related fixed point. In Proceedings of the 2nd Regional Conference on Mathematics and Applications, Jyvaskyla, Finland, 18–19 September 2014; pp. 377–380. [Google Scholar] [CrossRef]
- Fisher, B. On a theorem of Khan. Riv. Math. Univ. Parma 1978, 4, 1–4. [Google Scholar]
- Aydi, H.; Postolache, M.; Shatanawi, W. Coupled fixed point results for (ψ,ϕ)-weakly contractive mappings in ordered G-metric spaces. Comput. Math. Appl. 2012, 63, 298–309. [Google Scholar] [CrossRef]
- Aydi, H.; Wongyat, T.; Sintunavarat, W. On new evolution of Ri’s result via w-distances and the study on the solution for nonlinear integral equations and fractional differential equations. Adv. Differ. Equ. 2018, 32. [Google Scholar] [CrossRef]
- Aydi, H. On common fixed point theorems for (ψ,φ)-generalized f-weakly contractive mappings. Miskolc Math. Notes 2013, 14, 19–30. [Google Scholar] [CrossRef]
- Mustafa, Z.; Jaradat, M.M.M.; Aydi, H.; Alrhayyel, A. Some common fixed points of six mappings on Gb- metric spaces using (E.A) property. Eur. J. Pure Appl. Math. 2018, 11, 90–109. [Google Scholar] [CrossRef]
- Hu, S.; Papageorgiou, N.S. Theory. In Handbook of Multivalued Analysis, 1st ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997; Volume I. [Google Scholar]
- Durmaz, G.; Altun, I. Fixed point results for α-admissible mmutivalued F-contrtactions. Miscolc Math. Notes 2016, 17, 187–199. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qawaqneh, H.; Md Noorani, M.S.; Shatanawi, W.; Aydi, H.; Alsamir, H. Fixed Point Results for Multi-Valued Contractions in b−Metric Spaces and an Application. Mathematics 2019, 7, 132. https://doi.org/10.3390/math7020132
Qawaqneh H, Md Noorani MS, Shatanawi W, Aydi H, Alsamir H. Fixed Point Results for Multi-Valued Contractions in b−Metric Spaces and an Application. Mathematics. 2019; 7(2):132. https://doi.org/10.3390/math7020132
Chicago/Turabian StyleQawaqneh, Haitham, Mohd Salmi Md Noorani, Wasfi Shatanawi, Hassen Aydi, and Habes Alsamir. 2019. "Fixed Point Results for Multi-Valued Contractions in b−Metric Spaces and an Application" Mathematics 7, no. 2: 132. https://doi.org/10.3390/math7020132
APA StyleQawaqneh, H., Md Noorani, M. S., Shatanawi, W., Aydi, H., & Alsamir, H. (2019). Fixed Point Results for Multi-Valued Contractions in b−Metric Spaces and an Application. Mathematics, 7(2), 132. https://doi.org/10.3390/math7020132