# Equilibrium and Stability of Entropy Operator Model for Migratory Interaction of Regional Systems

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Structure of Dynamic Entropy Model of Migration

- ${x}_{in}(t),\phantom{\rule{0.166667em}{0ex}}(i,n)=\overline{1,N},$ as the migration flows $(i\rightleftarrows j)$ within the system;
- ${a}_{in}(t),\phantom{\rule{0.166667em}{0ex}}(i,n)=\overline{1,N},$ as the prior probabilities of individual migration between regions $(i,j)$ of the system;
- ${\alpha}_{n},\phantom{\rule{0.166667em}{0ex}}n=\overline{1,N},$ as the shares of mobile population in system regions;
- ${y}_{kn},\phantom{\rule{0.166667em}{0ex}}k=\overline{1,M},n=\overline{1,N},$ as the immigration flows $(k\to j)$ from external regions to system regions;
- ${b}_{kn},\phantom{\rule{0.166667em}{0ex}}k=\overline{1,M},n=\overline{1,N},$ as the prior probabilities of individual immigration from external region k to system region j;
- ${c}_{kn},\phantom{\rule{0.166667em}{0ex}}k=\overline{1,M},n=\overline{1,N},$ as the normalized (Here, normalization means that the values of specific cost belong to the range [0, 1].) specific generalized cost of immigration to system regions;
- ${c}_{kn}^{(s)},\phantom{\rule{0.166667em}{0ex}}k=\overline{1,M},n=\overline{1,N},s=\overline{1,r},$ as the normalized specific cost of immigration to system regions by the types of resources $(r)$;
- $T({K}_{1},\dots ,{K}_{N})$ as the normalized (Here, the normalized supply functions are defined by$$T({K}_{1},\dots ,{K}_{N})=\frac{1}{c}\tilde{T}({K}_{1},\dots ,{K}_{N}),\phantom{\rule{2.em}{0ex}}c=max{c}_{kn},$$
- ${T}^{(s)}({K}_{1},\dots ,{K}_{N})$ as the normalized supply functions by $s=\overline{1,r}$ types of financial resources for immigration.

- the generalized Boltzmann information entropy$${H}_{M}(X)=-\sum _{(i,n)=1;\phantom{\rule{0.166667em}{0ex}}i\ne n}^{N}{x}_{in}ln\frac{{x}_{in}}{{a}_{in}}$$
- by the generalized Boltzmann information entropy$${H}_{I}(X)=-\sum _{k=1}^{M}\sum _{n=1}^{N}{y}_{kn}ln\frac{{y}_{kn}}{{b}_{kn}}$$

- the generalized cost of the form$$\begin{array}{c}Y\in {\mathcal{D}}_{G}(\mathbf{K})=\{Y:\sum _{k=1}^{M}\sum _{n=1}^{N}{c}_{kn}{y}_{kn}=T(\mathbf{K}(t))\},\hfill \\ {c}_{kn}\in [0,1];\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}T(\mathbf{K}(t))=\frac{1}{c}\tilde{T}(\mathbf{K}(t)),\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}c=\underset{kn}{max}{c}_{kn};\hfill \end{array}$$
- the cost by the types of resources of the form$$\begin{array}{c}Y\in {\mathcal{D}}_{D}(\mathbf{K})=\{\sum _{k=1}^{M}\sum _{n=1}^{N}{c}_{kn}^{(s)}{y}_{kn}={\tilde{T}}^{(s)}(\mathbf{K}(t))\};\hfill \\ {c}_{kn}^{(s)}\in [0,1];\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}{\tilde{T}}^{(s)}(\mathbf{K}(t))=\frac{1}{{c}^{(s)}}{T}^{(s)}(\mathbf{K}(t)),\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}{c}^{(s)}=\underset{kn}{max}{c}_{kn}^{(s)},\phantom{\rule{0.166667em}{0ex}}s=\overline{1,r}.\hfill \end{array}$$

- for the interregional migration flows within the system,$${x}_{in}^{\ast}(t)=argmax\left({H}_{M}(X),\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}X\in \mathcal{D}(\mathbf{K})\right),\phantom{\rule{2.em}{0ex}}(i,n)=\overline{1,N};$$
- for the immigration flows from external regions to the system (with the generalized cost),$${y}_{kn}^{\ast}(t)=argmax\left({H}_{I}(Y),\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}Y\in {\mathcal{D}}_{G}(\mathbf{K})\right),\phantom{\rule{2.em}{0ex}}k=\overline{1,M},n=\overline{1,N};$$
- for the immigration flows from external regions to the system (with the cost by the types of resources),$${y}_{kn}^{\ast}(t)=argmax\left({H}_{I}(Y),\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}Y\in {\mathcal{D}}_{D}(\mathbf{K})\right),\phantom{\rule{2.em}{0ex}}k=\overline{1,M},n=\overline{1,N}.$$

## 3. Analysis of Entropy Operators

#### 3.1. Entropy Operator $\mathbf{K}\to X$

#### 3.2. Entropy Operator $\mathbf{K}\to Y$

## 4. Analysis of Migratory Interaction Model of Regional Systems

#### 4.1. Existence of Unique Singular Point

**Theorem**

**1.**

**Proof.**

**Theorem**

**2.**

#### 4.2. Stability of Singular Point

**Theorem**

**3.**

**Proof.**

## 5. Model of Migratory Interaction: An Example

#### 5.1. Data Arrays for Numerical Study of Model (38)

- ${\alpha}_{1},{\alpha}_{2},$ and ${\alpha}_{3}$ as the characteristics of population mobility in the system $\mathcal{GFI}$;
- $A=[{a}_{in},\phantom{\rule{0.166667em}{0ex}}(i,n)=\overline{1,N},\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}{a}_{nn}=0]$ as the matrix of the prior probabilities of individual migration in the system $\mathcal{GFI}$;
- $B=[{b}_{kn},\phantom{\rule{0.166667em}{0ex}}k=1,2;n=1,2,3]$ as the matrix of the prior probabilities of individual immigration from the system $\mathcal{SL}$;
- $C=[{c}_{kn},\phantom{\rule{0.166667em}{0ex}}k=1,2;n=1,2,3]$ as the matrix of normalized specific cost of the system $\mathcal{GFI}$ for maintaining the immigration from the system $\mathcal{SL}$.

- mobility $(m):{m}_{1}=7,{m}_{2}=8,{m}_{3}=5$;
- migration choice $(h):{h}_{12}=3,{h}_{13}=3,{h}_{21}=5,{h}_{23}=2,{h}_{31}=6,{h}_{32}=4$;
- immigration choice $(q):{q}_{11}=6,{q}_{12}=5,{q}_{13}=4,{q}_{21}=4,{q}_{22}=6,{q}_{23}=6$;
- immigration cost $(e):{e}_{11}=5,{e}_{12}=6,{e}_{13}=5,{e}_{21}=5,{e}_{22}=6,{e}_{23}=5.$

- the characteristics of population mobility in the system $\mathcal{GFI}$ as$${\alpha}_{n}=\nu {m}_{n},\phantom{\rule{2.em}{0ex}}n=1,2,3;$$
- the prior probabilities of individual migration in the system $\mathcal{GFI}$ as$${a}_{in}=\pi {h}_{in},\phantom{\rule{2.em}{0ex}}(i,n)=1,2,3;$$
- the prior probabilities of individual immigration from the system $\mathcal{SL}$ as$${\tilde{b}}_{kn}=\mu {q}_{kn},\phantom{\rule{2.em}{0ex}}k=1,2;\phantom{\rule{0.166667em}{0ex}}n=1,2,3;$$
- the normalized specific cost of the system $\mathcal{GFI}$ for maintaining the immigration from the system $\mathcal{SL}$ as$${c}_{kn}=T{e}_{kn},\phantom{\rule{2.em}{0ex}}k=1,2;\phantom{\rule{0.166667em}{0ex}}n=1,2,3.$$

#### 5.2. Equilibrium Distributions of Regional Population Sizes in System $\mathcal{GFI}$

#### 5.3. Stability of Equilibrium Distribution of Regional Population Sizes in System $\mathcal{GFI}$

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Bilecen, B.; Van Mol, C. Introduction: international academic mobility and inequalities. J. Ethic Migr. Stud.
**2017**, 43, 1241–1255. [Google Scholar] [CrossRef] [Green Version] - Weidlich, W. Sociodynamics; Harwood Academic Publishers: Amsterdam, The Netherlands, 2000; 456p. [Google Scholar]
- Zelinsky, W. The hypothesis of the mobility transition. Geogr. Rev.
**1971**, 46, 219–249. [Google Scholar] [CrossRef] - Rogers, A.; Willekens, F.; Raymer, J. Modelling interregional migration flows: continuity and change. J. Math. Popul. Stud.
**2001**, 9, 231–263. [Google Scholar] [CrossRef] - Rogers, A.; Little, J.; Raymer, J. The Indirect Estimation of Migration: Methods for Dealing with Irregular, Inadequate, and Missing Data; Springer: Berlin, Germany, 2010. [Google Scholar]
- Van der Knaap, G.A.; Steegers, W.F. Structural Analysis of Interregional and Intraregional Migration Patterns. In Demographic Research and Spatial Policy; Heide, H., Willekens, F., Eds.; Academic Press: New York, NY, USA, 1984. [Google Scholar]
- Black, R.; Xiang, B.; Caller, M.; Engberson, G.; Heering, L.; Markova, E. Migration and Development Causes and Consequences. In The Dynamics of International Migration and Settlement in Europe: A State of the Art; Penninx, R., Berger, M., Kraal, K., Eds.; Amsterdam University Press: Amsterdam, The Netherlands, 2006; pp. 41–63. [Google Scholar]
- Volpert, V.; Petrovskii, S.; Zincenko, A. Interaction of human migration and wealth distribution. Nonlinear Anal.
**2017**, 150, 408–423. [Google Scholar] [CrossRef] - Pan, J.; Nagurney, A. Using Markov chains to model human migration in a network equilibrium framework. Math. Comput. Model.
**1994**, 19, 31–39. [Google Scholar] [CrossRef] - Klabunde, A.; Zinn, S.; Willekens, F.; Leuchter, M. Multistable modelling extended by behavioural rules. An application to migration. Popul. Stud.
**2017**, 71, 61–67. [Google Scholar] [CrossRef] [PubMed] - Klabunde, A.; Willekens, F. Decision-making in agent-based models of migration: State of the art and challenges. Eur. J. Popul.
**2016**, 32, 73–97. [Google Scholar] [CrossRef] [PubMed] - Imel’baev, S.S.; Shmul’yan, B.L. Modeling of Stochastic Communication Systems. In Entropy Methods for Complex Systems Modeling; Wilson, A.G., Ed.; Nauka: Moscow, Russia, 1975; pp. 170–234. [Google Scholar]
- Wilson, A.G. Entropy in Urban and Regional Modelling; Pion Ltd.: Abingdon, UK, 2013. [Google Scholar]
- Popkov, Y.S. Mathematical Demoeconomy: Integrating Demographic and Economic Approaches; De Gruyter: Vienna, Austria, 2014. [Google Scholar]
- Krasnosel’skii, M.A.; Vainikko, G.M.; Zabreyko, R.P.; Ruticki, Y.B.; Stet’senko, V.V. Approximate Solutions of Operator Equations; Nauka: Moscow, Russia, 1969. (In Russian) [Google Scholar]
- Wilkinson, J.H. The Algebraic Eigenvalue Problem; Clarendon Press: Oxford, UK, 1965. [Google Scholar]

Notations | ${\mathit{\alpha}}_{1}$ | ${\mathit{\alpha}}_{2}$ | ${\mathit{\alpha}}_{3}$ |
---|---|---|---|

${C}_{1}$ | 0.0105 | 0.0120 | 0.0075 |

${C}_{2}$ | 0.0070 | 0.0080 | 0.0050 |

${C}_{3}$ | 0.0140 | 0.0160 | 0.0100 |

${\mathit{C}}_{1}$ | ${\mathit{C}}_{2}$ | ${\mathit{C}}_{3}$ | ||||||
---|---|---|---|---|---|---|---|---|

0.000 | 0.375 | 0.375 | 0.000 | 0.300 | 0.300 | 0.000 | 0.450 | 0.450 |

0.625 | 0.000 | 0.250 | 0.500 | 0.000 | 0.200 | 0.750 | 0.000 | 0.300 |

0.750 | 0.500 | 0.000 | 0.600 | 0.400 | 0.000 | 0.900 | 0.600 | 0.000 |

${\mathit{C}}_{1}$ | ${\mathit{C}}_{2}$ | ${\mathit{C}}_{3}$ | ||||||
---|---|---|---|---|---|---|---|---|

0.900 | 0.750 | 0.600 | 0.750 | 0.625 | 0.500 | 0.600 | 0.500 | 0.600 |

0.600 | 0.900 | 0.900 | 0.500 | 0.750 | 0.750 | 0.400 | 0.600 | 0.600 |

${\mathit{C}}_{1}$ | ${\mathit{C}}_{2}$ | ${\mathit{C}}_{3}$ | ||||||
---|---|---|---|---|---|---|---|---|

0.83 | 1.00 | 0.83 | 0.66 | 0.80 | 0.66 | 0.50 | 0.60 | 0.50 |

0.83 | 1.00 | 0.83 | 0.66 | 0.80 | 0.66 | 0.50 | 0.60 | 0.50 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Popkov, Y.S.; van Wissen, L.
Equilibrium and Stability of Entropy Operator Model for Migratory Interaction of Regional Systems. *Mathematics* **2019**, *7*, 130.
https://doi.org/10.3390/math7020130

**AMA Style**

Popkov YS, van Wissen L.
Equilibrium and Stability of Entropy Operator Model for Migratory Interaction of Regional Systems. *Mathematics*. 2019; 7(2):130.
https://doi.org/10.3390/math7020130

**Chicago/Turabian Style**

Popkov, Yuri S., and Leo van Wissen.
2019. "Equilibrium and Stability of Entropy Operator Model for Migratory Interaction of Regional Systems" *Mathematics* 7, no. 2: 130.
https://doi.org/10.3390/math7020130