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Abstract: In this paper, we develop a dynamic model for migratory interaction of regional systems
that is based on an entropy operator. Next, we study the properties of this operator and establish
the existence of a unique singular point in the dynamic entropy model. Here, we use monotonicity
property of entropy operator on corresponding vector interval. We study Lyapunov stability of
a dynamic system with entropy operator. Stability conditions have been obtained in terms of
eigenvalues of linearized system’s matrix. Finally, we give an illustrative example for migratory
interaction of regional systems.

Keywords: migration; regional mobility; prior probabilities of migratory movements; dynamic
system with entropy operator; monotonic operator; stability in small; singular point

1. Introduction

The processes of migration and biological reproduction represent major factors determining the
spatial distribution of populations. These factors are realized in considerably different time scales.
In accordance with standard assumptions, the relaxation time of migratory processes is 2–3 years
while the relaxation time of biological reproduction reaches 10–13 years, see [1–3]. An important
characteristic of population is its size, more specifically, its distribution in some regionalized space.
Migration considerably affects the spatiotemporal evolution of population distribution. For the time
intervals comparable with the relaxation times of migratory processes, the influence of biological
reproduction factors becomes rather small and therefore can be neglected.

Mathematical modeling and analysis of interregional migration was considered in numerous
publications. First, it seems appropriate to mention the monographs [4,5], which were dedicated to
a wide range of interregional migration problems, including mathematical modeling of migration
flows. Note that the problem of migration touches upon many aspects of socioeconomic, psychological
and political status of the space of migratory movements. So of crucial role is the structural analysis of
inter- and intraregional migration flows [6] and motivations that generate them [7,8]. The results of
structural and motivational analysis of migratory processes are used for computer simulation. There
exist three directions of research in this field, each relying on some system of hypotheses. One of the
directions involves the stochastic hypothesis about the origin of migratory motivations [9], which is
simulated using agent technologies [10,11]. This direction is adjoined by investigations based on the
thermodynamic model of migration flows [12,13]. The other two directions are connected with using
balanced [4,5] and Markov [2] models. Of course, the short list above does not exhaust the whole
variety of migration studies, merely outlining some topics of research.
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This paper considers the interaction of two regional systems as follows. The first system has
traditional migratory processes while the second is a source of immigration flows to the former.
We suggest a mathematical model of such interaction in form of a dynamic system with an entropy
operator. This model proceeds from the stochastic hypothesis about the origin of migration flows, which
is realized by conditional maximization of the generalized information entropy. Next, we develop a
qualitative analysis method for the dynamic system, including the existence of a unique equilibrium
distribution of regional population sizes and its stability.

Finally, the method suggested in this paper is illustrated by modeling the migratory interactions
between three EU countries (Germany, France, Italy—the system GFI) and two countries as sources of
immigration (Syria and Libya—the system SL). We construct the set of equilibrium distributions for
regional population size that is parameterized by the following characteristics: regional mobility, the
prior probabilities of migratory movements, and the normalized specific regional cost of immigration
(the system GFI); the prior probabilities of immigratory movements (the system SL).

2. Structure of Dynamic Entropy Model of Migration

Consider a spatial system partitioned into N regions that exchange population. At a time t, the
state of this system is characterized by the population distribution among all regions, i.e., by the vector
K(t) = {K1(t), . . . , KN(t)}. The population distribution varies with the course of time as the result
of interregional migration within the system and also external immigration from M source regions
outside the system.

We will employ the stochastic model of migration flows [14]. In accordance with this model,
interregional flows are formed by a random independent distribution of potential migrants between
system regions with some prior probabilities. A similar mechanism describes immigration flows
from external regions to system regions. These mechanisms (the distribution of migration flows)
are defined in probabilistic terms using appropriate entropy functions or functionals. Migratory
interactions between system regions take place under constraints on the size of mobile population
(the people inclined to migration). By standard assumption, the size of mobile population in a region
is proportional to the regional population size, and the coefficient of proportionality has regional
index. The potential amount of external immigration is often difficult or even impossible to calculate.
However, sometimes there exists expert appraisals for immigration flows from external regions to
system regions. Such appraisals often seem to be strongly overrated. Therefore, the constraints on
external immigration have to be associated with regional absorption cost of immigrants. The entropy
characteristics of migration flows as a function of flow distribution possess the so-called sharp
maximum. This justifies the hypothesis about the existence of a realizable distribution of migration
and immigration flows corresponding to the constrained maximum of the entropy [14].

Introduce the following notations for transforming the described phenomenology into
a mathematical model (see [14]):

• xin(t), (i, n) = 1, N, as the migration flows (i� j) within the system;
• ain(t), (i, n) = 1, N, as the prior probabilities of individual migration between regions (i, j) of

the system;
• αn, n = 1, N, as the shares of mobile population in system regions;
• ykn, k = 1, M, n = 1, N, as the immigration flows (k→ j) from external regions to system regions;
• bkn, k = 1, M, n = 1, N, as the prior probabilities of individual immigration from external region k

to system region j;
• ckn, k = 1, M, n = 1, N, as the normalized (Here, normalization means that the values of specific

cost belong to the range [0, 1].) specific generalized cost of immigration to system regions;

• c(s)kn , k = 1, M, n = 1, N, s = 1, r, as the normalized specific cost of immigration to system regions
by the types of resources (r);
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• T(K1, . . . , KN) as the normalized (Here, the normalized supply functions are defined by

T(K1, . . . , KN) =
1
c

T̃(K1, . . . , KN), c = max ckn,

where T̃(K1, . . . , KN) denotes a given supply function.) supply function of generalized financial
resources (cost) for immigration;

• T(s)(K1, . . . , KN) as the normalized supply functions by s = 1, r types of financial resources for
immigration.

We will model the migration and immigration flows using the stochastic migration mechanisms
characterized by

• the generalized Boltzmann information entropy

HM(X) = −
N

∑
(i,n)=1; i 6=n

xin ln
xin
ain

(1)

for interregional migration within the system and
• by the generalized Boltzmann information entropy

HI(X) = −
M

∑
k=1

N

∑
n=1

ykn ln
ykn
bkn

(2)

for the immigration from external regions to the system.

Migratory processes always have some constraints. For interregional migration, they are associated
with the size of mobile population in regions, i.e.,

X ∈ D(K) = {X :
N

∑
i=1

xni = αnKn(t), n = 1, N}. (3)

In the case of external immigration, such constraints are imposed on the system resources required
for external immigration. In accordance with the classification above, we will consider the following
models of immigration cost:

• the generalized cost of the form

Y ∈ DG(K) = {Y :
M

∑
k=1

N

∑
n=1

cknykn = T(K(t))}, (4)

ckn ∈ [0, 1]; T(K(t)) =
1
c

T̃(K(t)), c = max
kn

ckn;

• the cost by the types of resources of the form

Y ∈ DD(K) = {
M

∑
k=1

N

∑
n=1

c(s)kn ykn = T̃(s)(K(t))}; (5)

c(s)kn ∈ [0, 1]; T̃(s)(K(t)) =
1

c(s)
T(s)(K(t)), c(s) = max

kn
c(s)kn , s = 1, r.

The functions T(K(t)) and T(1)(K(t)), . . . , T(r)(K(t)) depend on the population distribution in the
system, and these relationships are linear [14]:

T(K(t)) =
N

∑
n=1

γnKn(t), T(s)(K(t)) =
N

∑
n=1

βsnKn(t), s = 1, r. (6)
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Therefore, the entropy models of population distribution have the following form:

• for the interregional migration flows within the system,

x∗in(t) = arg max (HM(X), X ∈ D(K)) , (i, n) = 1, N; (7)

• for the immigration flows from external regions to the system (with the generalized cost),

y∗kn(t) = arg max (HI(Y), Y ∈ DG(K)) , k = 1, M, n = 1, N; (8)

• for the immigration flows from external regions to the system (with the cost by the types
of resources),

y∗kn(t) = arg max (HI(Y), Y ∈ DD(K)) , k = 1, M, n = 1, N. (9)

These models represent the corresponding entropy operators that map the space Rn
+ of all vectors K(t)

into the space RN2
+ of all matrices X, or into the space RNM

+ of all matrices Y.

3. Analysis of Entropy Operators

3.1. Entropy Operator K→ X

Consider the constrained maximization problem for entropy (1) and (4) and construct the
corresponding Lagrange function

LM(X, λ) = HM(X) +
N

∑
n=1

λn(αnKn(t)−
N

∑
i=1

xni), (10)

where λ = {λ1, . . . , λN} are the Lagrange multipliers. The optimality conditions have the form

−
(

ln
xni
ani

+ 1
)
− λn = 0, (n, i) = 1, N; (11)

N

∑
i=1

xni − αnKn(t) = 0, n = 1, N.

The solution of these equations, i.e., the migration flows from region n to region i (i 6= n) are given by

x∗ni =
ani

∑N
l=1 anl

αnKn(t), (n, i) = 1, N, (12)

and form the matrix X∗. In this case, the mapping (K ∈ RN
+ → X ∈ RN2

+ ) (the entropy operator) can
be written in the analytic form (12).

The transposed matrix Xᵀ∗ consists of the elements

x∗in =
ain

∑N
l=1 aln

αiKi(t), (n, i) = 1, N. (13)

They represent the immigration flows from region i to region n (i 6= n).
Hence, for region n the net migration flow is

Sn(t) =
∑N

i=1 ainαiKi(t)

∑N
l=1 aln

− αnKn(t), n = 1, N. (14)
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3.2. Entropy Operator K→ Y

Now, consider the constrained maximization problem for entropy (2) and (4). The corresponding
Lagrange function is defined by

LI(Y, λ) = HI(Y) + λ

(
T(K(t))−

M

∑
k=1

N

∑
n=1

cknykn

)
, (15)

where λ is the Lagrange multiplier and the normalized specific generalized cost has the form

ck0,n0 = c = 1, 0 < ckn < 1. (16)

Here, the optimality conditions are

−
(

ln
ykn
bkn

+ 1
)
− λckn = 0, k = 1, M, n = 1, N, (17)

−
M

∑
k=1

N

∑
n=1

cknykn + T(K(t)) = 0.

These equations yield the entropy-optimal immigration flows from external regions to the system:

y∗kn = b̃knzckn , k = 1, M, n = 1, N, (18)

z = exp(λ) ≥ 0, b̃kn = e−1bkn.

The exponential Lagrange multiplier z satisfies the equation

M

∑
k=1

N

∑
n=1

ckn b̃knzckn − T(K(t)) = 0. (19)

In this case, the mapping K→ Y (the entropy operator) is described by equalities (18) and Equation (19).
The total immigration flow from external regions to the system constitutes

In(t) =
M

∑ y∗kn =
M

∑
k=1

b̃knzckn , n = 1, N. (20)

4. Analysis of Migratory Interaction Model of Regional Systems

Under the above assumptions, the system state evolves with the internal net migration flows and
also the net immigration flows from external regions, i.e.,

dKn(t)
dt

=
N

∑
i=1

[x∗in(t)− x∗ni(t)] +
M

∑
k=1

y∗kn, n = 1, N. (21)

Using the formulas of these flows, we obtain the following equations of the dynamic migratory
interaction model of regional systems:

dKn(t)
dt

= −αnKn(t) +
N

∑
i=1

ain

∑N
l=1 aln

αiKi(t) +
M

∑
k=1

b̃knzckn , n = 1, N, (22)

M

∑
k=1

N

∑
n=1

ckn b̃knzckn − T(K(t)) = 0, z ≥ 0.
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4.1. Existence of Unique Singular Point

The existence problem of unique equilibrium in this model is associated with analysis of
the equations

(1− αn)Kn +
N

∑
i=1,i 6=n

ainαiKi +
M

∑
k=1

bknzckn = Kn, n = 1, N, (23)

N

∑
n=1

γ̃nKn(t) + z−
M

∑
k=1

N

∑
n=1

ckn b̃knzckn = z.

Introduce the vector of variables

u = {u1, . . . , uN , u(N+1)}, un = Kn, n = 1, N; u(N+1) = z. (24)

Then Equation (23) can be written as

A(u) = u, u ≥ 0, (25)

with the vector function

A(u) =


(1− α1)u1 + ∑N

i=1,i 6=1 ai1αiui + ∑M
k=1 b̃k1uck1

(N+1)
· · · · · · · · · · · · · · · · · · · · · · · ·

(1− αN)uN + ∑N
i=1,i 6=N aiNαiui + ∑M

k=1 b̃kNuckn
(N+1)

∑N
n=1 γ̃nun + uN+1 −∑M

k=1,k 6=k0
∑N

n=1,n 6=n0
c̃kn b̃knuckn

(N+1)

 . (26)

The Jacobian of this function has the form

J(u) =

(
J11 J12

J21 J22

)
, (27)

where

J11 =


1− α1 a21α2 · · · aN1αN
a12α1 1− α2 · · · aN2αN

...
...

. . .
...

a1Nα1 a2Nα2 · · · 1− αN

 > 0, (28)

J12 =
(

∑M
k=1 b̃k1ck1u(ck1−1)

N+1 ∑M
k=1 b̃k2ck2u(ck2−1)

N+1 · · · ∑M
k=1 b̃kNckNu(ckN−1)

N+1

)ᵀ
> 0,

J21 =
(

γ1 γ2 · · · γN

)
> 0,

J22 = 1−
M

∑
k=1

N

∑
n=1

c2
kn b̃knu(ckn−1)

N+1 .

Theorem 1. Let J22 > 0. Then the function A(u) is strictly monotonic over the space R(N+1)
+ .

Proof. Under the hypothesis of this theorem, all elements of the Jacobian are positive, which proves
the desired result.

Assume we know the population distribution among system regions at the initial time t0, i.e.,
{K1(t0) = u0

1, . . . , KN(t0) = u0
N}. Denote by u0

N+1 > 0 the solution of the last equation in (25) and (26).
Define the vector u0 = {u0

1, . . . , u0
N , u0

N+1}. Suppose that, by an expert appraisal of immigration from
external regions, the population size in system regions may increase by κ > 1 times. This means that
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{K1(t) < κu0
1 = ũ1, . . . , KN(t) < κu0

N = ũN+1} for t > t0. Designate as ũN+1 > u0
N+1 > 0 the solution

of the last equation in (25) and (26) with the described upper estimates for regional population sizes.
Construct the vector ũ = {ũ1, . . . , ũN , ũN+1} and define the vector segment U = {u0, ũ}.

Theorem 2. For Equation (26), let

A(u0) > u0, A(ũ) < ũ. (29)

Then there exists an leats one solution u∗ of Equation (26) on the vector segment U .

The proof of this result follows from ([15], Theorem 3.1 in p. 48). Moreover, by this theorem the
iterative process

A(us) = u(s+1), u(0) ∈ U , (30)

converges to the point u∗.

4.2. Stability of Singular Point

For the stability analysis of a singular point, represent the system of Equation (22) in the form

du
dt

= A(u)− u. (31)

Denote by y = u− u∗ the deviation from the singular point. Then the standard linearization procedure
yields the following differential equations in the deviation from this singular point:

dy
dt

= J̃(u∗)y, y ∈ R(N+1), (32)

where
J̃(u∗) = J(u∗)− E. (33)

The system of differential Equation (32) is linear, and there exist many stability analysis methods for
its equilibrium. We will described a method based on the localization procedure of the eigenvalues of
the matrix J̃(u∗) using the Gershgorin circles [16]. In accordance with the Gershgorin circle theorem,
on the complex plane any eigenvalue of the matrix J̃(u∗) belongs to at least one of the following circles
with center ci and radius $i:

ci =

{
−αi, i = 1, N,

−∑M
k=1 ∑N

n=1 c2
kn b̃knu(ckn−1)

N+1 , i = N + 1.
(34)

$i =
(N+1)

∑
j 6=i
|dij|, i = 1, (N + 1), (35)

where

dij =


aij, (i, j) = 1, N, j 6= i,

∑M
k=1 b̃kicki[u

(cki−1)
N+1 ]∗, i = 1, N, j = N + 1,

γj, i = N + 1, j = 1, N,

−∑M
k=1 ∑N

n=1 c2
kn b̃kn[u

(ckn−1)
N+1 ]∗, (i, j) = N + 1.

(36)

These equalities dictate that the centers are ci < 0, i = 1, (N + 1), while the radii are $i > 0,
i = 1, (N + 1).
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Theorem 3. Let
ci + $i < 0, i = 1, (N + 1). (37)

The the singular point u∗ of system (22) is stable in the small.

Proof. Under the hypotheses of this theorem, all eigenvalues of the matrix J̃(u∗) have negative
real parts.

5. Model of Migratory Interaction: An Example

The appearance of territories with low economic status always causes the growth of immigration.
The early 2000s were remarkable for the formation of several such territories in the Northern and
Central Africa, the Near East, Afghanistan, etc. As a result, tens of millions of migrants moved to the
EU as the level of life in these territories dropped below the subsistence minimum. The EU countries
have to allocate considerable financial resources for their filtering and accommodation, which are
often unacceptable.

As an illustrative example, consider the migratory interactions between three EU countries (the
system GFI composed of regions with index n, namely, Germany (1), France (2), and Italy (3)) and
two sources of immigration (the system SL composed of regions with index k, namely, Syria (1) and
Lybia (2)). In terms of the mathematical model (22), we have (see [2,4])

dKn(t)
dt

= −αnKn(t) +
3

∑
i=1,i 6=n

ain

∑n
l=1,l 6=n aln

αiKi(t) +
2

∑
k=1

b̃knzckn , n = 1, 2, 3;

3

∑
n=1

γnKn(t)−
2

∑
k=1

3

∑
n=1

ckn b̃knzckn = 0. (38)

5.1. Data Arrays for Numerical Study of Model (38)

This model contains four groups of parameters as follows:

• α1, α2, and α3 as the characteristics of population mobility in the system GFI ;
• A = [ain, (i, n) = 1, N, ann = 0] as the matrix of the prior probabilities of individual migration in

the system GFI ;
• B = [bkn, k = 1, 2; n = 1, 2, 3] as the matrix of the prior probabilities of individual immigration

from the system SL;
• C = [ckn, k = 1, 2; n = 1, 2, 3] as the matrix of normalized specific cost of the system GFI for

maintaining the immigration from the system SL.

Recall that the elements of the first three groups of parameters have values strictly smaller than 1.
The maximal element of the matrix C is 1 while the other elements are strictly smaller than 1. The
coefficients are γ1 = 2.00, γ2 = 2.53, and γ3 = 1.65. (These values are defined by the immigration
budgeting rules of the EU countries).

Introduce the four-dimensional attribute space P ⊂ R4
+ of the status variables: ν (mobility), π

(migration choice), µ (immigration choice), and T (cost scale). For each group, assign the following
rating points for the parameters using the ten-point scale:

• mobility (m) : m1 = 7, m2 = 8, m3 = 5;
• migration choice (h) : h12 = 3, h13 = 3, h21 = 5, h23 = 2, h31 = 6, h32 = 4;
• immigration choice (q) : q11 = 6, q12 = 5, q13 = 4, q21 = 4, q22 = 6, q23 = 6;
• immigration cost (e) : e11 = 5, e12 = 6, e13 = 5, e21 = 5, e22 = 6, e23 = 5.

These points are mostly determined by regional population sizes and the levels of economic
development. Then the parameters in these groups can be written as follows:
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• the characteristics of population mobility in the system GFI as

αn = νmn, n = 1, 2, 3; (39)

• the prior probabilities of individual migration in the system GFI as

ain = πhin, (i, n) = 1, 2, 3; (40)

• the prior probabilities of individual immigration from the system SL as

b̃kn = µqkn, k = 1, 2; n = 1, 2, 3; (41)

• the normalized specific cost of the system GFI for maintaining the immigration from the system
SL as

ckn = Tekn, k = 1, 2; n = 1, 2, 3. (42)

Define the admissible domains F of the status variables in the form

F = N ⊗P ⊗M⊗T ,

ν ∈ N = [10−3, 2× 10−3]; π ∈ P = [0.5× 10−1, 1.5× 10−1]; (43)

µ ∈ M = [0.5× 10−1, 1.5× 10−1]; T ∈ T = [0.1, 0.5]. (44)

Exhaustive search over a spatial grid will be used below. So divide each interval into four
subintervals. Then we have exhaustive search on 256 nodes of the grid. The discrete analogs of these
intervals have the form

Ñ = 10(−1) · [0.5; 1.0; 1.5; 2.0], P̃ = 10−1 · [0.75; 1.00; 1.25; 1.50],

M̃ = 10−1[0.75; 1.00; 1.25; 1.50], T̃ = [0.2; 0.3; 0.4; 0.5]. (45)

The grid represents is the direct product of these intervals, i.e.,

F̃ = Ñ ⊗ P̃ ⊗ M̃ ⊗ T̃ . (46)

5.2. Equilibrium Distributions of Regional Population Sizes in System GFI

For the equilibrium analysis of the system GFI , we have to solve the equations

−νmnKn +
3

∑
i=1,i 6=n

πhin

∑n
l=1,l 6=n πhln

νmiKi +
2

∑
k=1

µqknzTekn = 0, n = 1, 2, 3;

2.0K1 + 2.53K2 + 1.65K3 −
2

∑
k=1

3

∑
n=1

TeknµqknzTekn = 0. (47)

The initial values of the variables are K0
1 = 82, K0

2 = 67, K0
3 = 60, and z0 = 0.1. Population size is

measured in million people. Figure 1 shows the calculated equilibrium distributions (K∗1 , K∗2 , K∗3) of
regional population sizes for the systems GFI and SL over the grid F̃ (46). The cloud K contains
256 points corresponding to the nodes of grid (46). The center of this cloud matches the average
distribution of regional population sizes

K̄ =
1

256

256

∑
i=1

Ki = {82.7; 67.9; 60.3}. (48)

A useful characteristic of the cloud is its variance coreR, i.e., the ball inside the cloud of radius
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R =
1

256

256

∑
i=1

(K− K̄)ᵀ(K− K̄) = 1.17. (49)

5.3. Stability of Equilibrium Distribution of Regional Population Sizes in System GFI

The equilibrium distributions are stable in the small if and only if the real parts of the
eigenvalues of the matrix J̃ (33) belong to intervals (37). On the strength of Theorem 3, we have
the stability condition

max
i

(c∗ii + $∗i ) ≤ 0, (50)

where (∗) denotes the values of variables corresponding to the equilibrium distribution, $∗i is defined
by equality (35), and

c∗ii =

{
−ν∗mi, i = 1, 3,

−[T2µ]∗ ∑M
k=1 ∑N

n=1 e2
knqkn[z∗](T

∗ekn−1), i = 4;
(51)

d∗ij =


π∗hij, (i, j) = 1, 3, j 6= i,

[Tµ]∗ ∑M
k=1 qkieki[z∗](T

∗eki−1), i = 1, 3, j = 4,

γj, i = 4, j = 1, 3,

−[T2µ]∗ ∑M
k=1 ∑N

n=1 e2
knqkn[z∗](T

∗ekn−1), (i, j) = 4.

(52)

Figure 1 illustrates three equilibrium distributions (marked by triangles) with the coordinates

C1 = {82.6228; 67.4256; 61.0597}, C2 = {82.5310; 67.4051; 60.9496},
C3 = {82.2856; 67.2362; 60.8639}, (53)

which satisfies the stability conditions. These stable in the small equilibrium distributions of regional
population sizes are associated with the parameters of model (38) combined in Tables 1–4.
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Figure 1. Equilibrium distributions.
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Table 1. Mobility coefficients.

Notations α1 α2 α3

C1 0.0105 0.0120 0.0075
C2 0.0070 0.0080 0.0050
C3 0.0140 0.0160 0.0100

Table 2. Prior probabilities of regional mobility.

C1 C2 C3

0.000 0.375 0.375 0.000 0.300 0.300 0.000 0.450 0.450
0.625 0.000 0.250 0.500 0.000 0.200 0.750 0.000 0.300
0.750 0.500 0.000 0.600 0.400 0.000 0.900 0.600 0.000

Table 3. Prior probabilities of immigration.

C1 C2 C3

0.900 0.750 0.600 0.750 0.625 0.500 0.600 0.500 0.600
0.600 0.900 0.900 0.500 0.750 0.750 0.400 0.600 0.600

Table 4. Normalized specific cost.

C1 C2 C3

0.83 1.00 0.83 0.66 0.80 0.66 0.50 0.60 0.50
0.83 1.00 0.83 0.66 0.80 0.66 0.50 0.60 0.50

Therefore, using the known parameters of model (38), we may calculate its major dynamic
characteristics, the stable equilibrium distributions of regional population sizes, which can be further
used, e.g., for short-term forecasting.

6. Conclusions

In this paper, we have developed a dynamic entropy model of migratory interactions. Next, we
have studied the entropy operators describing the distributions of migration and immigration flows as
well as established the existence conditions of unique equilibrium distributions of regional population
sizes and their stability conditions. The new model has been applied to analyze the equilibrium
distributions of regional population sizes and their stability. The existence and stability conditions
of these distribution both depend on the model parameters, which can be found using randomized
machine learning procedures.
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