Next Article in Journal
A New Generalized Taylor-Like Explicit Method for Stiff Ordinary Differential Equations
Previous Article in Journal
Inframarginal Model Analysis of the Evolution of Agricultural Division of Labor
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The k-Rainbow Domination Number of CnCm

1
College of Science, Dalian Maritime University, Dalian 116026, China
2
School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
*
Author to whom correspondence should be addressed.
Mathematics 2019, 7(12), 1153; https://doi.org/10.3390/math7121153
Submission received: 10 October 2019 / Revised: 20 November 2019 / Accepted: 21 November 2019 / Published: 1 December 2019
(This article belongs to the Section Mathematics and Computer Science)

Abstract

:
Given a graph G and a set of k colors, assign an arbitrary subset of these colors to each vertex of G. If each vertex to which the empty set is assigned has all k colors in its neighborhood, then the assignment is called a k-rainbow dominating function (kRDF) of G. The minimum sum of numbers of assigned colors over all vertices of G is called the k-rainbow domination number of graph G, denoted by γ r k ( G ) . In this paper, we focus on the study of the k-rainbow domination number of the Cartesian product of cycles, C n C m . For k 8 , based on the results of J. Amjadi et al. (2017), γ r k ( C n C m ) = m n . For ( 4 k 7 ) , we give a proof for the new lower bound of γ r 4 ( C n C 3 ) . We construct some novel and recursive kRDFs which are good enough and upon these functions we get sharp upper bounds of γ r k ( C n C m ) . Therefore, we obtain the following results: (1) γ r 4 ( C n C 3 ) = 2 n ; (2) γ r k ( C n C m ) = k m n 8 for n 0 ( mod 4 ) , m 0 ( mod 4 ) ( 4 k 7 ) ; (3) for n 0 ( mod 4 ) or m 0 ( mod 4 ) , m n 2 γ r 4 ( C n C m ) m n 2 + m + n 2 1 and k m n 8 γ r k ( C n C m ) k m n + n 8 + m for 5 k 7 . We also discuss Vizing’s conjecture on the k-rainbow domination number of C n C m .

1. Introduction

Let G = ( V , E ) be an undirected graph with vertex set V and edge set E. The open neighborhood N ( v ) of a vertex v consists of the vertices adjacent to v. The degree of a vertex v V is deg G ( v ) = | N ( v ) | . The minimum and maximum degree of a graph G are denoted by δ ( G ) and Δ ( G ) respectively.
The k-rainbow domination problem is to determine the k-rainbow domination number of G. This problem can be described as the following: k-rainbow domination represents a situation in which there are k types of guards, and it is required that each location (vertex) which is not occupied by a guard has all types of guards in its neighborhood. The k-rainbow domination has many practical applications, such as in information transfer or people allocation between company departments, network security, channel assignment, logistics scheduling, storage hierarchy optimization, and so on. Therefore, it has been extensively studied [1,2].
Let G be a graph, and f be a mapping from V ( G ) to the power set of { 1 , 2 , , k } , i.e., f : V ( G ) P ( { 1 , 2 , , k } ) . If u N ( v ) f ( u ) = { 1 , 2 , , k } for each vertex v V ( G ) with f ( v ) = , then f is called a k-rainbow dominating function (kRDF) of G. The weight of f is w ( f ) = v V ( G ) | f ( v ) | , | f ( v ) | denotes the number of elements in f ( v ) . The minimum weight of a kRDF of G is called the k-rainbow domination number of G, denoted by γ r k ( G ) .
G H , the Cartesian product of graphs G and H, is the graph with vertex set V ( G ) × V ( H ) , where two vertices are adjacent if and only if they are equal in one coordinate and adjacent in the other. Let G = C n C m with V ( G ) = { v i , j | 0 i n 1 , 0 j m 1 } and E ( G ) = { e i , j | e i , j = ( v i , j , v i + 1 , j ) , 0 i n 1 , 0 j m 1 } { e i , j | e i , j = ( v i , j , v i , j + 1 ) , 0 i n 1 , 0 j m 1 } , where indices i and j are read modulo n and m respectively. Figure 1 shows the graph of C n C m . The problem of domination on Cartesian product graphs was first initiated by Vizing [3]. Since then, various domination numbers of G H are extensively studied [4,5,6].
The concept of k-rainbow domination is introduced by Brešar et al. [1], and they determine the exact values of 2-rainbow domination numbers of paths, cycles, Suns, etc. [7]. Since then, many scholars have begun to pay attention to and studied this parameter. There are many results on 2-rainbow domination. Stepień et al. present the exact values of γ r 2 ( C n C 3 ) [8], γ r 2 ( C n C 5 ) [9], and γ r 2 ( C m C n ) [10] for m 0 ( mod 6 ) , n 0 ( mod 3 ) . Shao Zehui et al. [11] determined the exact values of γ r 2 ( C 4 C n ) and γ r 2 ( C 8 C n ) . Shao Zehui et al. [12] studied the 2-rainbow domination number of the generalized Petersen graphs P ( n , k ) and prove γ r 2 ( P ( n , k ) ) = n for n 12 , γ r 2 ( P ( n , 1 ) ) = n for n 5 , and γ r 2 ( P ( 2 k + 2 , k ) ) = 2 k + 2 for k 2 . Wang Yueli et al. [13] propose a tight upper bound for γ r 2 ( P ( n , k ) ) when n 4 k + 1 . Liu Jiajie et al. [14] determine γ r 2 ( S ( n , m ) ) , γ r 2 ( S + ( n , m ) ) , and γ r 2 ( S + + ( n , m ) ) , where S ( n , m ) , S + ( n , m ) , and S + + ( n , m ) are Sierpiński graphs and extended Sierpiński graphs.
The problem of k-rainbow domination will be more complex with k becoming bigger. The relative studies on k-rainbow domination for k 3 are not as numerous as 2-rainbow domination. Michitaka Furuya et al. [15] prove that γ r 3 ( G ) 5 n 6 for every connected graph G with δ ( G ) 2 and | V ( G ) | 8 . Shao Zehui et al. [16] investigate the 3-rainbow domination number of cycles, paths and the generalized Petersen graphs. They determine the exact values of γ r 3 ( P ( n , 1 ) ) , and present the upper bounds of γ r 3 ( P ( n , 2 ) ) , γ r 3 ( P ( n , 3 ) ) . Gerard J. Chang et al. [17] prove the k-rainbow domination problem is NP-complete, and for a given tree T, they determine the smallest k such that γ r k ( T ) = | V ( T ) | . Hao Guoliang et al. [18] study the k-rainbow domination number of directed graphs and determine the exact value of γ r k ( D ) in the Cartesian product of directed cycles for k 4 . Kang Qiong et al. [19] initiate the study of outer-independent k-rainbow domination and they present some bounds for the outer-independent 2-rainbow domination number. Simon Brezovnik et al. [20] present some bounds on the k-rainbow independent domination number of the lexicographic product and give the exact values of the 2-rainbow independent domination number of the lexicographic product. J. Amjadi et al. [21] show the lower bounds on the k-rainbow domination number for any graphs and they present γ r k ( G ) = n for k 2 Δ ( G ) .
In this paper, we focus on the study of the k-rainbow domination number of C n C m ( k 4 ) . Thank to J. Amjadi et al. [21] giving the lower bounds on the k-rainbow domination number for any graphs, we get the lower bounds of γ r k ( C n C m ) and the exact values of γ r k ( C n C m ) for k 8 .
Theorem 1.
([21]) Let k be a positive integer, and let G be a graph of order n, then
γ r k ( G ) k n Δ ( G ) + k , k Δ ( G ) , k n 2 Δ ( G ) , Δ ( G ) < k 2 Δ ( G ) , n , k > 2 Δ ( G ) .
Corollary 1.
([21]) Let k be a positive integer, and let G be a graph of order n. If k 2 Δ ( G ) , then γ r k ( G ) = n .
Since Δ ( C n C m ) = 4 , by Corollary 1, it has
Corollary 2.
For k 8 ,
γ r k ( C n C m ) = m n .
In this paper, we provide a proof for the new lower bound on the 4-rainbow domination number of C n C 3 . We construct some recursive kRDFs and upon these functions we obtain sharp upper bounds on the 4-rainbow domination number of C n C m . We determine the exact values γ r 4 ( C n C 3 ) = 2 n and γ r k ( C n C m ) = k m n 8 for n 0 ( mod 4 ) , m 0 ( mod 4 ) ( 4 k 7 ) . We present some bounds of γ r k ( C n C m ) for n 0 ( mod 4 ) or m 0 ( mod 4 ) ( 4 k 7 ) . At last, we discuss Vizing’s conjecture on the k-rainbow domination number of C n C m .

2. 4-Rainbow Domination Number of Graph C n C m

2.1. Lower Bounds on the 4-Rainbow Domination Number of Graph C n C m

Lemma 1.
For a graph C n C m ,
γ r 4 ( C n C m ) m n 2 .
Proof. 
In C n C m , the order is m n , Δ = 4 . Since k = 4 , then k = Δ . By Theorem 1, we can obtain the lower bound of γ r 4 ( C n C m ) is m n 2 . □
For some special graphs, the lower bound of γ r 4 ( C n C m ) can be higher than m n 2 . Next, we will prove the lower bound of γ r 4 ( C n C 3 ) can be improved to 2 n instead of 3 n 2 .
Let f be a 4RDF on C n C 3 , we denote V i = { v i , j | 0 j 2 } , w ( f ( v i , j ) ) = | f ( v i , j ) | and w ( f i ) = v i , j V i | f ( v i , j ) | .
Lemma 2.
For G = C n C 3 , if there exists i ( 0 i n 1 ) such that w ( f i ) = 0 , then w ( f i 1 ) 6 or w ( f i + 1 ) 6 , where indices are read modulo n.
Proof. 
If w ( f i ) = 0 , i.e., w ( f ( v i , 0 ) ) = w ( f ( v i , 1 ) ) = w ( f ( v i , 2 ) ) = 0 , then by the definition of 4RDF, it follows
w ( f i 1 ) + w ( f i + 1 ) = w ( f ( v i 1 , 0 ) ) + w ( f ( v i 1 , 1 ) ) + w ( f ( v i 1 , 2 ) ) + w ( f ( v i + 1 , 0 ) ) + w ( f ( v i + 1 , 1 ) ) + w ( f ( v i + 1 , 2 ) ) = ( w ( f ( v i 1 , 0 ) ) + w ( f ( v i + 1 , 0 ) ) ) + ( w ( f ( v i 1 , 1 ) ) + w ( f ( v i + 1 , 1 ) ) ) + ( w ( f ( v i 1 , 2 ) ) + w ( f ( v i + 1 , 2 ) ) ) 4 + 4 + 4 = 12 .
So, w ( f i 1 ) 6 or w ( f i + 1 ) 6 . □
Lemma 3.
For G = C n C 3 , if there exists i ( 0 i n 1 ) such that w ( f i ) = 1 , then w ( f i 1 ) 3 or w ( f i + 1 ) 3 , where indices are read modulo n.
Proof. 
If w ( f i ) = 1 , without loss of generality, we let w ( f ( v i , 0 ) ) = 1 , then by the definition of 4RDF, it follows
w ( f i 1 ) + w ( f i + 1 ) = ( w ( f ( v i 1 , 0 ) ) + w ( f ( v i 1 , 1 ) ) + w ( f ( v i 1 , 2 ) ) ) + w ( f ( v i + 1 , 0 ) ) + w ( f ( v i + 1 , 1 ) ) + w ( f ( v i + 1 , 2 ) ) ) = ( w ( f ( v i 1 , 0 ) ) + w ( f ( v i + 1 , 0 ) ) ) + ( w ( f ( v i 1 , 1 ) ) + w ( f ( v i + 1 , 1 ) ) ) + ( w ( f ( v i 1 , 2 ) ) + w ( f ( v i + 1 , 2 ) ) ) 0 + 3 + 3 = 6 .
So, w ( f i 1 ) 3 or w ( f i + 1 ) 3 . □
Lemma 4.
Let G = C n C 3 , then γ r 4 ( G ) 2 n .
Proof. 
For 0 i n 1 we divide V i into B s by the following steps.
Step 0. Let s = s 1 = s 2 = s 3 = 0 and let D [ i ] = 0 for i = 0 up to n 1 .
Step 1. For every i with w ( f i ) 6 D [ i ] = 0 do:
  • s = s + 1 ; D [ i ] = 1 ; B s = V i ;
  • if w ( f i 1 ) = 0 D [ i 1 ] = 0 , then D [ i 1 ] = 1 ; B s = B s V i 1 ;
  • if w ( f i + 1 ) = 0 D [ i + 1 ] = 0 , then D [ i + 1 ] = 1 ; B s = B s V i + 1 ;
  • if w ( f i 1 ) = 1 D [ i 1 ] = 0 , then D [ i 1 ] = 1 ; B s = B s V i 1 ;
  • if w ( f i + 1 ) = 1 D [ i + 1 ] = 0 , then D [ i + 1 ] = 1 ; B s = B s V i + 1 ;
  • It follows V i t = 1 s B t w ( f i ) | t = 1 s B t | 3 × 2 . Let s 1 = s .
By Lemma 2, by now, for every row with w ( f i ) 6 , D [ i ] = 1 , and w ( f i ) = 0 , D [ i ] = 1 .
Step 2. For every i with 4 w ( f i ) 5 D [ i ] = 0 do:
  • s = s + 1 ; D [ i ] = 1 ; B s = V i ;
  • if w ( f i 1 ) = 1 D [ i 1 ] = 0 , then D [ i 1 ] = 1 ; B s = B s V i 1 ;
  • if w ( f i + 1 ) = 1 D [ i + 1 ] = 0 , then D [ i + 1 ] = 1 ; B s = B s V i + 1 .
  • It has V i t = s 1 + 1 s B t w ( f i ) | t = s 1 + 1 s B t | 3 × 2 . Let s 2 = s .
Step 3. For every i with w ( f i ) = 3 D [ i ] = 0 do:
  • s = s + 1 ; D [ i ] = 1 ; B s = V i ;
  • if w ( f i + 1 ) = 1 D [ i + 1 ] = 0 , then D [ i + 1 ] = 1 ; B s = B s V i + 1 .
  • It follows V i t = s 2 + 1 s B t w ( f i ) | t = s 2 + 1 s B t | 3 × 2 . Let s 3 = s .
By Lemma 2 and 3, by now, w ( f i ) = 2 for all D [ i ] = 0 ( 0 i n 1 ) .
Step 4. For every i with w ( f i ) = 2 D [ i ] = 0 do:
  • s = s + 1 ; D [ i ] = 1 ; B s = V i .
  • It has V i t = s 3 + 1 s B t w ( f i ) | t = s 3 + 1 s B t | 3 × 2 .
Thus, i = 0 n 1 w ( f i ) 2 n , that is γ r 4 ( G ) 2 n . □

2.2. Upper Bounds on the 4-Rainbow Domination Number of Graph C n C m

Lemma 5.
For m = 3 , n 3 ,
γ r 4 ( C n C 3 ) 2 n .
Proof. 
First, we define a function g on C 4 C 3 as follows.
g ( v i , j ) = , i ( mod 2 ) j ( mod 2 ) , { 1 } , i = 0 , j = 0 i = 2 , j = 2 , { 2 } , i = 0 , j = 2 i = 2 , j = 0 , { 3 , 4 } , i = 1 , j = 1 i = 3 , j = 1 .
Figure 2a shows g on C 4 C 3 . For convenience, we use 0 , 1 , 2 , 3 , 4 to encode the color sets , { 1 } , { 2 } , { 3 } , { 4 } , and use 1 , 2 ; 1 , 3 ; ; 3 , 4 to encode the color sets { 1 , 2 } , { 1 , 3 } , ⋯, { 3 , 4 } . We use Figure 2b to show a function on a graph in the rest of this paper.
Then, we construct a function f as follows.
f ( v i , j ) = , n 2 ( mod 4 ) ( i = n 3 , j = 0 i = n 2 , j = 1 , 2 i = n 1 , j = 0 ) , { 1 } , n 2 ( mod 4 ) i = n 3 , j = 1 , 2 , { 2 } , n 2 ( mod 4 ) i = n 1 , j = 1 , 2 , { 3 , 4 } , n 2 ( mod 4 ) i = n 2 , j = 0 , g ( v i ( mod 4 ) , j ) , o t h e r w i s e .
Figure 3 shows f on C 8 C 3 , C 9 C 3 , C 10 C 3 and C 11 C 3 . One can check f is a 4RDF and its weight is w ( f ) = n × 2 = 2 n . Hence, γ r 4 ( C n C 3 ) 2 n . □
For C n C m ( n , m 4 ) , by symmetry of C n C m , we construct 4RDFs in the following cases:
(1)
m, n are evens and m 0 ( mod 4 ) , n 0 ( mod 4 ) (Lemma 6).
(2)
m, n are evens and m 0 ( mod 4 ) , n 2 ( mod 4 ) (Lemma 7).
(3)
m, n are evens and m 2 ( mod 4 ) , n 2 ( mod 4 ) (Lemma 8).
(4)
m, n are odds and m 1 ( mod 4 ) , n 1 ( mod 4 ) (Lemma 9).
(5)
m, n are odds and m 1 ( mod 4 ) , n 3 ( mod 4 ) (Lemma 10).
(6)
m, n are odds and m 3 ( mod 4 ) , n 3 ( mod 4 ) (Lemma 9).
(7)
m is odd, n is even and m 1 ( mod 2 ) , n 0 ( mod 4 ) (Lemma 11).
(8)
m is odd, n is even and m 1 ( mod 2 ) , n 2 ( mod 4 ) (Lemma 12).
Lemma 6.
For m 0 ( mod 4 ) , n 0 ( mod 4 ) ( m , n 4 ) , γ r 4 ( C n C m ) m n 2 .
Proof. 
We first define a 4RDF g 1 on C 4 C 4 , and Figure 4 shows the function.
g 1 ( v i , j ) = , i ( mod 2 ) j ( mod 2 ) , { 1 } , i = j = 0 , 2 , { 2 } , i + j = 2 i j , { 3 } , i = j = 1 , 3 , { 4 } , o t h e r w i s e .
Then, we construct a recursive 4RDF f on C n C m ,
f ( v i , j ) = g 1 ( v i ( mod 4 ) , j ( mod 4 ) ) .
Figure 5 shows f on C 8 C 8 . The weight w ( f ) = m n 2 . Thus, γ r 4 ( C n C m ) m n 2 . □
Lemma 7.
For m 0 ( mod 4 ) , n 2 ( mod 4 ) ( m , n 4 ) , γ r 4 ( C n C m ) m n 2 + m .
Proof. 
We construct the function f as follows.
f ( v i , j ) = { 1 } , i = n 1 j 0 ( mod 2 ) , { 3 , 4 } , i = n 1 j 1 ( mod 2 ) , g 1 ( v i ( mod 4 ) , j ( mod 4 ) ) , o t h e r w i s e .
where g 1 is defined as shown in Figure 4.
Figure 6 shows f on C 10 C 8 . The weight w ( f ) = m × ( n 1 ) 2 + 3 m 2 = m n 2 + m . Hence, γ r 4 ( C n C m ) m n 2 + m . □
Lemma 8.
For m 2 ( mod 4 ) , n 2 ( mod 4 ) ( m , n 4 ) ,
γ r 4 ( C n C m ) m n 2 + 2 n m , n 0 ( mod m ) , m n 2 + n m 2 ( m 2 ) n m 1 2 , n 0 ( mod m ) .
Proof. 
First, we define six different functions on C 4 C 4 and Figure 7 shows the six functions.
g 1 ( v i , j ) = , i ( mod 2 ) j ( mod 2 ) , { 1 } , i = j = 0 , 2 , { 2 } , i + j = 2 i j , { 3 } , i = j = 1 , 3 , { 4 } , i + j = 4 i j . g 2 ( v i , j ) = , i ( mod 2 ) j ( mod 2 ) , { 1 } , i + j = 2 i j , { 2 } , i = j = 0 , 2 , { 3 } , i + j = 4 i j , { 4 } , i = j = 1 , 3 .
g 3 ( v i , j ) = , i ( mod 2 ) j ( mod 2 ) , { 1 } , i + j = 4 i j , { 2 } , i = j = 1 , 3 , { 3 } , i + j = 2 i j , { 4 } , i = j = 0 , 2 . g 4 ( v i , j ) = , i ( mod 2 ) j ( mod 2 ) , { 1 } , i = j = 0 , 2 , { 2 } , i + j = 2 i j , { 3 } , i + j = 4 i j , { 4 } , i = j = 1 , 3 .
g 5 ( v i , j ) = , i ( mod 2 ) j ( mod 2 ) , { 1 } , i + j = 2 i j , { 2 } , i = j = 0 , 2 , { 3 } , i = j = 1 , 3 , { 4 } , i + j = 4 i j . g 6 ( v i , j ) = , i ( mod 2 ) j ( mod 2 ) , { 1 } , i + j = 4 i j , { 2 } , i = j = 1 , 3 , { 3 } , i = j = 0 , 2 , { 4 } , i + j = 2 i j .
Then, we design a novel partition, { B 11 , B 12 , B 13 , B 14 , B 15 } , on C m C m . The blocks are defined as the following (shown in Figure 8).
B 11 = { v i , j | i + j m 2 2 } , B 12 = { v i , j | j i m 2 } , B 13 = { v i , j | i j m 2 } , B 14 = { v i , j | i + j 3 m 2 2 } , B 15 = V ( C m C m ) B 11 B 12 B 13 B 14 .
Now, we construct g m and g m on C m C m .
For m 6 ( mod 8 ) ,
g m ( v i , j ) = { 1 } , v i , j { v m 2 1 , m 1 , v m 1 , m 2 1 } g 1 ( v i ( mod 4 ) , j ( mod 4 ) ) , v i , j B 11 B 14 { v m 2 1 , m 1 , v m 1 , m 2 1 } , g 2 ( v i ( mod 4 ) , j ( mod 4 ) ) , v i , j B 12 B 13 { v m 2 1 , m 1 , v m 1 , m 2 1 } , g 3 ( v i ( mod 4 ) , j ( mod 4 ) ) , v i , j B 15 .
For m 2 ( mod 8 ) ,
g m ( v i , j ) = { 1 } , v i , j { v m 2 1 , m 1 , v m 1 , m 2 1 } g 4 ( v i ( mod 4 ) , j ( mod 4 ) ) , v i , j B 11 B 14 { v m 2 1 , m 1 , v m 1 , m 2 1 } , g 5 ( v i ( mod 4 ) , j ( mod 4 ) ) , v i , j B 12 B 13 { v m 2 1 , m 1 , v m 1 , m 2 1 } , g 6 ( v i ( mod 4 ) , j ( mod 4 ) ) , v i , j B 15 .
Case 1. For n 0 ( mod m ) , we construct f on C n C m as follows.
f ( v i , j ) = g m ( v i ( mod m ) , j ) , m 6 ( mod 8 ) , g m ( v i ( mod m ) , j ) , m 2 ( mod 8 ) .
Figure 9 shows f on C 42 C 14 and C 54 C 18 . One can check f is a 4RDF and its weight is w ( f ) = ( m m 2 + 2 ) × n m = m n 2 + 2 n m . Hence, γ r 4 ( C n C m ) m n 2 + 2 n m for n 0 ( mod m ) .
Case 2. For n 0 ( mod m ) , we design two kinds of partition, { B 11 , B 12 , B 13 , B 14 , B 15 } and { B 21 , B 22 , B 23 , B 24 , B 25 } . The former is defined as shown in Figure 8, and the later is defined on the lines from n n + 1 to n 1 as shown in Figure 10, where n n = 2 m × n m 1 2 1 .
B 21 = { v i , j | j + i m 2 + n n 1 } , B 22 = { v i , j | i j n n + 1 m 2 } , B 23 = { v i , j | i j n m 2 } , B 24 = { v i , j | j + i m 2 + n 2 } , B 25 = { v i , j | n n + 1 i n 1 , 0 j m 1 } B 21 B 22 B 23 B 24 .
We construct functions h and h on the lines from n n + 1 to n 1 .
For m 6 ( mod 8 ) ,
h ( v i , j ) = { 1 } , v i , j = v n 1 , m 2 1 , { 1 } , v i , j B 25 j = m 1 i 0 ( mod 2 ) , g 1 ( v ( i n n 1 ) ( mod 4 ) , j ( mod 4 ) ) , v i , j B 21 B 24 { v n 1 , m 2 1 } , g 2 ( v ( i n n 1 ) ( mod 4 ) , j ( mod 4 ) ) , v i , j B 22 B 23 { v n 1 , m 2 1 } , g 3 ( v ( i n n 1 ) ( mod 4 ) , j ( mod 4 ) ) , v i , j B 25 j m 2 , { 1 , 2 } , v i , j B 25 j = m 1 i 1 ( mod 2 ) .
For m 2 ( mod 8 ) ,
h ( v i , j ) = { 1 } , v i , j = v n 1 , m 2 1 , { 1 } , v i , j B 25 j = m 1 i 0 ( mod 2 ) , g 4 ( v ( i n n 1 ) ( mod 4 ) , j ( mod 4 ) ) , v i , j B 21 B 24 { v n 1 , m 2 1 } , g 5 ( v ( i n n 1 ) ( mod 4 ) , j ( mod 4 ) ) , v i , j B 22 B 23 { v n 1 , m 2 1 } , g 6 ( v ( i n n 1 ) ( mod 4 ) , j ( mod 4 ) ) , v i , j B 25 j m 2 , { 1 , 2 } , v i , j B 25 j = m 1 i 1 ( mod 2 ) .
Now, we construct f on C n C m .
m 6 ( mod 8 ) ,
f ( v i , j ) = g m ( v i ( mod m ) , j ) , 0 i n n , h ( v i , j ) , n n + 1 i n 1 .
m 2 ( mod 8 ) ,
f ( v i , j ) = g m ( v i ( mod m ) , j ) , 0 i n n , h ( v i , j ) , n n + 1 i n 1 .
Figure 11 shows f on C 46 C 14 and C 58 C 18 . One can check f is a 4RDF and its weight is
w ( f ) = m n 2 + n m 1 2 × 2 × 2 + n 2 m × n m 1 2 m = m n 2 + n m + n m 1 2 × ( 2 m ) × 2 .
Hence, γ r 4 ( C n C m ) m n 2 + n m 2 ( m 2 ) n m 1 2 for n 0 ( mod m ) . □
Lemma 9.
For m ( mod 4 ) = n ( mod 4 ) = 1 , 3 ( m , n 4 ) , γ r 4 ( C n C m ) m n + m + n 1 2 .
Proof. 
We construct f on C n C m as follows.
f ( v i , j ) = { 3 } , i = n 1 j 3 ( mod 4 ) j = m 1 i 3 ( mod 4 ) , { 4 } , i = n 1 j 1 ( mod 4 ) j = m 1 i 1 ( mod 4 ) , g 1 ( v i ( mod 4 ) , j ( mod 4 ) ) , o t h e r w i s e .
where g 1 is defined as shown in Figure 4.
Figure 12 shows f on C 9 C 9 and C 11 C 11 . The weight w ( f ) = ( m 1 ) ( n 1 ) 2 + m + n 1 = m n + m + n 1 2 . Hence, γ r 4 ( C n C m ) m n + m + n 1 2 . □
Lemma 10.
For m 1 ( mod 4 ) , n 3 ( mod 4 ) ( m , n 4 ) , γ r 4 ( C n C m ) m n + m + n 5 2 .
Proof. 
We construct f on C n C m as follows,
f ( v i , j ) = { 1 } , i = n 2 , j = m 3 , { 2 } , i = n 3 , j = m 2 , m 3 , { 3 } , i = n 1 j 3 ( mod 4 ) j = m 1 i 3 ( mod 4 ) , { 4 } , i = n 1 j 1 ( mod 4 ) j = m 1 i 1 ( mod 4 ) , , i = n 3 , j = m 1 i = n 2 , j = m 2 i = n 1 , j = m 3 , m 1 , g 1 ( v i ( mod 4 ) , j ( mod 4 ) ) , o t h e r w i s e ,
where g 1 is defined as shown in Figure 4.
Figure 13 shows f on C 11 C 9 . One can check f is a 4RDF and its weight is w ( f ) = ( m 3 ) ( n 3 ) 2 + m 3 2 × 2 + m 3 + n 3 2 × 2 + n 3 + 5 = m n + m + n 5 2 . Hence, γ r 4 ( C n C m ) m n + m + n 5 2 . □
Lemma 11.
For m 1 ( mod 2 ) , n 0 ( mod 4 ) ( m , n 4 ) , γ r 4 ( C n C m ) m n 2 + n 2 .
Proof. 
We construct f on C n C m as follows,
f ( v i , j ) = { 3 } , j = m 1 i 3 ( mod 4 ) , { 4 } , j = m 1 i 1 ( mod 4 ) , g 1 ( v i ( mod 4 ) , j ( mod 4 ) ) , o t h e r w i s e ,
where g 1 is defined as shown in Figure 4.
Figure 14 shows f on C 8 C 9 , C 8 C 11 . One can check f is a 4RDF and its weight is w ( f ) = ( m 1 ) × n 2 + n = m n 2 + n 2 . Hence, γ r 4 ( C n C m ) m n 2 + n 2 . □
Lemma 12.
For m 1 ( mod 2 ) , n 2 ( mod 4 ) ( m , n 4 ) ,
γ r 4 ( C n C m ) m n 2 + m + n 2 1 , m 1 ( mod 4 ) , m n 2 + m + n 2 2 , m 3 ( mod 4 ) .
Proof. 
Case 1. For m 1 ( mod 4 ) , we construct f as follows,
f ( v i , j ) = { 1 } , i = n 1 j 0 ( mod 2 ) , { 3 } , j = m 1 i 3 ( mod 4 ) , { 4 } , j = m 1 i 1 ( mod 4 ) i n 2 , { 3 , 4 } , i = n 1 j 1 ( mod 2 ) , g 1 ( v i ( mod 4 ) , j ( mod 4 ) ) , o t h e r w i s e ,
where g 1 is defined as shown in Figure 4.
Figure 15 shows f on C 10 C 9 . The weight w ( f ) = ( m 1 ) × ( n 1 ) 2 + n + 3 ( m 1 ) 2 = m n 2 + m + n 2 1 . Hence, γ r 4 ( C n C m ) m n 2 + m + n 2 1 for m 1 ( mod 4 ) .
Case 2. For m 3 ( mod 4 ) , we construct f as follows,
f ( v i , j ) = , i = n 1 , j = m 1 , { 1 } , i = n 1 j 0 ( mod 2 ) j m 1 , { 3 } , j = m 1 i 3 ( mod 4 ) i n 1 , { 4 } , j = m 1 i 1 ( mod 4 ) i n 1 , { 3 , 4 } , i = n 1 j 1 ( mod 2 ) , g 1 ( v i ( mod 4 ) , j ( mod 4 ) ) , o t h e r w i s e ,
where g 1 is defined as shown in Figure 4.
Figure 15 shows f on C 10 C 11 . The weight w ( f ) = ( n 2 ) × ( m 1 ) 2 + n 2 + 2 × ( m 3 ) + 5 = m n 2 + m + n 2 2 . Hence, γ r 4 ( C n C m ) m n 2 + m + n 2 2 for m 3 ( mod 4 ) . □

2.3. The Values and Bounds of γ r 4 ( C n C m )

By Lemma 4 and Lemma 5, we can get the exact values of γ r 4 ( C n C 3 ) .
Theorem 2.
For any integer n 3 , γ r 4 ( C n C 3 ) = 2 n .
By Lemma 1 and Lemma 6, we have
Theorem 3.
For m , n 4 , and m 0 ( mod 4 ) , n 0 ( mod 4 ) , γ r 4 ( C n C m ) = m n 2 .
By Lemmas 1 and 7–12, we have
Theorem 4.
For m , n 4 , and m 0 ( mod 4 ) or n 0 ( mod 4 ) ,
m n 2 γ r 4 ( C n C m ) m n 2 + m + n 2 1 .

3. The k-Rainbow Domination Number of Graph C n C m ( 5 k 7 )

Lemma 13.
For 5 k 7 , γ r k ( C n C m ) k m n 8 .
Proof. 
Since Δ ( C n C m ) = 4 , then k > Δ , by Theorem 1, γ r k ( C n C m ) k m n 8 . □
Next, we will present upper bounds on the k-rainbow domination number of graph C n C m ( 5 k 7 ) . Let | V t c l r | denotes the number of vertex containing color t ( t = 1 , 2 , 3 , 4 ) . Based on 4RDFs, we can construct kRDFs for C n C m ( k 5 ) . The main idea is: (1) Find | V t 0 c l r | , where | V t 0 c l r | = min { | V 1 c l r | , | V 2 c l r | , | V 3 c l r | , | V 4 c l r | } . (2) Replace color t 0 with colors t 0 , 5 , 6 , , k . Then, we can get upper bounds of γ r k C n C m ( 5 k 7 ) .
Lemma 14.
For n 3 , 5 k 7 ,
γ r k ( C n C 3 ) min { k n 2 , 3 n } , n 0 ( mod 4 ) , min { k ( n 1 ) 2 + 4 , 3 n } , n 1 , 3 ( mod 4 ) , min { k ( n 2 ) 2 + 8 , 3 n } , n 2 ( mod 4 ) .
Proof. 
By the 4RDF f we construct for C n C 3 in Lemma 5 (see Figure 3), we can count:
n 0 ( mod 4 ) , | V 1 c l r | = | V 2 c l r | = | V 3 c l r | = | V 4 c l r | = n 2 ,
n 1 ( mod 4 ) , | V 1 c l r | = | V 2 c l r | = n + 1 2 , | V 3 c l r | = | V 4 c l r | = n 1 2 ,
n 2 ( mod 4 ) , | V 1 c l r | = | V 2 c l r | = n + 2 2 , | V 3 c l r | = | V 4 c l r | = n 2 2 ,
n 3 ( mod 4 ) , | V 1 c l r | = | V 2 c l r | = n + 1 2 , | V 3 c l r | = | V 4 c l r | = n 1 2 .
Then,
| V t 0 c l r | = n 2 , n 0 ( mod 4 ) , n 1 2 , n 1 , 3 ( mod 4 ) , n 2 2 , n 2 ( mod 4 ) .
Thus,
γ r k ( C n C 3 ) w ( f ) + ( k 4 ) | V t 0 c l r | 2 n + ( k 4 ) | V t 0 c l r | = min { k n 2 , 3 n } , n 0 ( mod 4 ) , min { k ( n 1 ) 2 + 4 , 3 n } , n 1 , 3 ( mod 4 ) , min { k ( n 2 ) 2 + 8 , 3 n } , n 2 ( mod 4 ) .
 □
Lemma 15.
For m , n 4 , m 0 ( mod 4 ) , n 0 ( mod 4 ) and 5 k 7 , γ r k ( C n C m ) k m n 8 .
Proof. 
By the 4RDF f in Lemma 6 (see Figure 5), | V t 0 c l r | = | V 1 c l r | = | V 2 c l r | = | V 3 c l r | = | V 4 c l r | = m n 8 . Thus, γ r k ( C n C m ) w ( f ) + ( k 4 ) | V t 0 c l r | m n 2 + ( k 4 ) m n 8 = k m n 8 . □
Lemma 16.
For m , n 4 , m 0 ( mod 4 ) or n 0 ( mod 4 ) and 5 k 7 , γ r k ( C n C m ) k m n + n 8 + m .
Proof. 
(1) For m ( mod 4 ) = 0 , n ( mod 4 ) = 2 , by f in Lemma 7 (see Figure 6), | V t 0 c l r | = m n 8 , thus γ r k ( C n C m ) w ( f ) + ( k 4 ) | V t 0 c l r | m n 2 + m + ( k 4 ) × m n 8 = k m n 8 + m .
(2) For m ( mod 4 ) = 2 , n ( mod 4 ) = 2 , by f in Lemma 8 (see Figure 9 and Figure 11).
For n 0 ( mod m ) , | V t 0 c l r | = m n 4 8 . Thus
γ r k ( C n C m ) w ( f ) + ( k 4 ) | V t 0 c l r | m n 2 + 2 n m + ( k 4 ) × m n 4 8 = k m n 4 8 + 2 n m + 2 .
For n 0 ( mod m ) , | V t 0 c l r | m n + 4 8 . Thus
γ r k ( C n C m ) w ( f ) + ( k 4 ) | V t 0 c l r | m n 2 + n m 2 ( m 2 ) n m 1 2 + ( k 4 ) × m n + 4 8 = k m n + 4 8 2 ( m 2 ) n m 1 2 + n m 2 .
(3) For m ( mod 4 ) = n ( mod 4 ) = 1 , 3 , by f in Lemma 9 (see Figure 12).
For m ( mod 4 ) = n ( mod 4 ) = 1 , | V t 0 c l r | = m n + m + n 3 8 , t 0 = 2 , 3 , 4 .
Thus,
γ r k ( C n C m ) w ( f ) + ( k 4 ) | V t 0 c l r | m n + m + n 1 2 + ( k 4 ) × m n + m + n 3 8 = k ( m n + m + n 3 ) 8 + 1 .
For m ( mod 4 ) = n ( mod 4 ) = 3 , | V t 0 c l r | = m n + m + n 7 8 , t 0 = 3 .
Thus,
γ r k ( C n C m ) w ( f ) + ( k 4 ) | V t 0 c l r | m n + m + n 1 2 + ( k 4 ) × m n + m + n 7 8 = k ( m n + m + n 7 ) 8 + 3 .
(4) For m ( mod 4 ) = 1 , n ( mod 4 ) = 3 , by f in Lemma 10 (see Figure 13), | V t 0 c l r | = m n + m + n 7 8 , thus γ r k ( C n C m ) w ( f ) + ( k 4 ) | V t 0 c l r | m n + m + n 5 2 + ( k 4 ) × m n + m + n 7 8 = k ( m n + m + n 7 ) 8 + 1 .
(5) For m ( mod 2 ) = 1 , n ( mod 4 ) = 0 , by f in Lemma 11 (see Figure 14), | V t 0 c l r | = m n + n 8 , γ r k ( C n C m ) m n 2 + ( k 4 ) | V t 0 c l r | = m n 2 + ( k 4 ) × m n + n 8 = k ( m n + n ) 8 .
(6) For m ( mod 2 ) = 1 , n ( mod 4 ) = 2 , by f in Lemma 12 (see Figure 15).
| V t 0 c l r | = m n + n 4 8 m 1 ( mod 4 ) m n + n + 6 8 m 3 ( mod 4 ) .
Thus,
γ r k ( C n C m ) w ( f ) + ( k 4 ) | V t 0 c l r | = m n 2 + m + n 2 1 + ( k 4 ) m n + n 4 8 , m 1 ( mod 4 ) , m n 2 + m + n 2 2 + ( k 4 ) m n + n + 6 8 , m 3 ( mod 4 ) , = k m n + n 4 8 + m + 1 , m 1 ( mod 4 ) , k m n + n + 6 8 + m 3 , m 3 ( mod 4 ) .
To sum up, for m 0 ( mod 4 ) or n 0 ( mod 4 ) and 5 k 7 , γ r k ( C n C m ) k m n + n 8 + m . □
By Lemma 13 and Lemma 15, we have the following Theorem.
Theorem 5.
For m , n 4 , m 0 ( mod 4 ) , n 0 ( mod 4 ) and 5 k 7 ,
γ r k ( C n C m ) = k m n 8 .
By Lemma 13 and Lemma 14, we have
Theorem 6.
For n 3 , 5 k 7 ,
3 k n 8 γ r k ( C n C 3 ) min { k n 2 , 3 n } , n 0 ( mod 4 ) , min { k ( n 1 ) 2 + 4 , 3 n } , n 1 , 3 ( mod 4 ) , min { k ( n 2 ) 2 + 8 , 3 n } , n 2 ( mod 4 ) .
By Lemma 13 and Lemma 16, we can get
Theorem 7.
For m , n 4 , m 0 ( mod 4 ) or n 0 ( mod 4 ) , and 5 k 7 ,
k m n 8 γ r k ( C n C m ) k m n + n 8 + m .

4. Discussion on Vizing’s Conjecture

Vizing’s conjecture [3] concerns a relation between the domination number and the cartesian product of graphs. It states γ ( G H ) γ ( G ) γ ( H ) , where γ ( G ) denotes the domination number of G. In this section, we check Vizing’s generalized conjecture for the k-rainbow domination number of C n C m (shown in Table 1). From Table 1, one can see γ r k ( C m C n ) γ r k ( C m ) γ r k ( C n ) is not always true.

5. Conclusions

In this paper, we study the k-rainbow domination number of C n C m ( 4 k 7 ) . We provide a proof for the new lower bound on the 4-rainbow domination number of C n C 3 . We construct some novel and recursive 4RDFs, and upon these functions we obtain some sharp upper bounds on the 4-rainbow domination number of C n C m . Therefore, for k = 4 , we determine γ r 4 ( C n C 3 ) = 2 n ; for 4 k 7 , we determine γ r k ( C n C m ) = k m n 8 for n 0 ( mod 4 ) , m 0 ( mod 4 ) ; we present the bounds of γ r k ( C n C m ) for n 0 ( mod 4 ) or m 0 ( mod 4 ) . Finally, we discuss Vizing’s generalized conjecture for the k-rainbow domination number of C n C m .

Author Contributions

H.G. contributes for supervision, methodology, validation, project administration and formal analysing. K.L. contributes for resource, some computations and wrote the initial draft of the paper. Y.Y. wrote the final draft.

Funding

This work is supported by the Fundamental Research Funds for the Central University, Grand No. is 3132019323.

Acknowledgments

Authors gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation. This work is supported by the Fundamental Research Funds for the Central University, Grand No. is 3132019323.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Brešar, B.; Henning, M.A.; Rall, D.F. Rainbow domination in graphs. Taiwan J. Math. 2008, 12, 213–225. [Google Scholar] [CrossRef]
  2. Dehgardi, N.; Sheikholeslami, S.M.; Volkmann, L. The k-rainbow bondage number of a graph. Discret. Appl. Math. 2014, 174, 133–139. [Google Scholar]
  3. Vizing, V.G. Some unsolved problems in graph theory. Uspehi Mater. Nauk. 1968, 23, 117–134. [Google Scholar]
  4. Chen, Q.; Zhao, C.Y.; Zhao, M. Dominator colorings of certain cartesian products of paths and cycles. Graph Combinator. 2017, 33, 73–83. [Google Scholar]
  5. Li, Z.P.; Shao, Z.H.; Xu, J. Weak {2}-domination number of Cartesian products of cycles. J. Comb. Optim. 2018, 35, 75–85. [Google Scholar]
  6. Ye, A.S.; Miao, F.; Shao, Z.H.; Liu, J.B.; Žerovnik, J.; Repolusk, P. More Results on the Domination Number of Cartesian Product of Two Directed Cycles. Mathematics 2019, 7, 210. [Google Scholar] [CrossRef]
  7. Brešar, B.; Šumenjak, T.K. On the 2-rainbow domination in graphs. Discret. Appl. Math. 2007, 155, 2397–2400. [Google Scholar]
  8. Stepień, Z.; Zwierzchowski, M. 2-rainbow domination number of cartesian products: CnC3 and CnC5. J. Comb. Optim. 2014, 28, 748–755. [Google Scholar] [CrossRef]
  9. Stepień, Z.; Szymaszkiewicz, A.; Szymaszkiewicz, L.; Zwierzchowski, M. 2-Rainbow domination number of CnC5. Discret. Appl. Math. 2014, 170, 113–116. [Google Scholar] [CrossRef]
  10. Stepień, Z.; Szymaszkiewicz, L.; Zwierzchowski, M. The Cartesian product of cycles with small 2-rainbow domination number. J. Comb. Optim. 2015, 30, 668–674. [Google Scholar] [CrossRef]
  11. Shao, Z.H.; Li, Z.P.; Erveš, R.; Žerovnik, J. The 2-Rainbow domination numbers of C4Cn and C8Cn. Natl. Acad. Sci. Lett. 2019, 2, 1–8. [Google Scholar]
  12. Shao, Z.H.; Jiang, H.Q.; Wu, P.; Wang, S.H.; Žerovnik, J.; Zhang, X.S.; Liu, J.B. On 2-rainbow domination of generalized Petersen graphs. Discret. Appl. Math. 2019, 257, 370–384. [Google Scholar] [CrossRef]
  13. Wang, Y.L.; Wu, K.H. A tight upper bound for 2-rainbow domination in generalized Petersen graphs. Discret. Appl. Math. 2013, 161, 2178–2188. [Google Scholar] [CrossRef]
  14. Liu, J.J.; Chang, S.C.; Lin, C.J. The 2-rainbow domination of Sierpiński graphs and extended Sierpiński graphs. Theor. Comput. Syst. 2017, 61, 893–906. [Google Scholar] [CrossRef]
  15. Furuya, M.; Koyanagi, M.; Yokota, M. Upper bound on 3-rainbow domination in graphs with minimum degree 2. Discret. Optim. 2018, 29, 45–76. [Google Scholar] [CrossRef]
  16. Shao, Z.H.; Liang, M.L.; Yin, C.; Xu, X.D.; Pavlič, P.; Žerovnik, J. On rainbow domination numbers of graphs. Inform. Sci. 2014, 254, 225–234. [Google Scholar] [CrossRef]
  17. Chang, G.J.; Wu, J.J.; Zhu, X.D. Rainbow domination on trees. Discret. Appl. Math. 2010, 158, 8–12. [Google Scholar] [CrossRef]
  18. Hao, G.L.; Qian, J.G. On the rainbow domination number of digraphs. Graph Combinator. 2016, 32, 1903–1913. [Google Scholar] [CrossRef]
  19. Kang, Q.; Samodivkin, V.; Shao, Z.H.; Sheikholeslami, S.M.; Soroudi, M. Outer-independent k-rainbow domination. J. Taibah Univ. Sci. 2019, 1, 883–891. [Google Scholar] [CrossRef]
  20. Brezovnik, S.; Šumenjak, T.K. Complexity of k-rainbow independent domination and some results on the lexicographic product of graphs. Appl. Math. Comput. 2019, 349, 214–220. [Google Scholar] [CrossRef]
  21. Amjadi, J.; Dehgardi, N.; Furuya, M.; Sheikholeslam, S.M. A sufficient condition for large rainbow domination number. Int. J. Comput. Math. Comput. Syst. Theory 2017, 2, 53–65. [Google Scholar] [CrossRef]
Figure 1. Graph C n C m .
Figure 1. Graph C n C m .
Mathematics 07 01153 g001
Figure 2. The g for C 4 C 3 . (a) Vertex labelled with color sets. (b) Vertex labelled with codes.
Figure 2. The g for C 4 C 3 . (a) Vertex labelled with color sets. (b) Vertex labelled with codes.
Mathematics 07 01153 g002
Figure 3. f on C 8 C 3 , C 9 C 3 , C 10 C 3 , C 11 C 3 .
Figure 3. f on C 8 C 3 , C 9 C 3 , C 10 C 3 , C 11 C 3 .
Mathematics 07 01153 g003
Figure 4. The g 1 for C 4 C 4 .
Figure 4. The g 1 for C 4 C 4 .
Mathematics 07 01153 g004
Figure 5. f on C 8 C 8 .
Figure 5. f on C 8 C 8 .
Mathematics 07 01153 g005
Figure 6. f on C 10 C 8 .
Figure 6. f on C 10 C 8 .
Mathematics 07 01153 g006
Figure 7. Six different functions on C 4 C 4 .
Figure 7. Six different functions on C 4 C 4 .
Mathematics 07 01153 g007
Figure 8. Partition on C 14 C 14 .
Figure 8. Partition on C 14 C 14 .
Mathematics 07 01153 g008
Figure 9. Function f on C 42 C 14 and C 54 C 18 .
Figure 9. Function f on C 42 C 14 and C 54 C 18 .
Mathematics 07 01153 g009
Figure 10. Partition on the last [ ( n 1 ) ( n n + 1 ) ] lines.
Figure 10. Partition on the last [ ( n 1 ) ( n n + 1 ) ] lines.
Mathematics 07 01153 g010
Figure 11. Function f on C 46 C 14 and C 58 C 18 .
Figure 11. Function f on C 46 C 14 and C 58 C 18 .
Mathematics 07 01153 g011
Figure 12. f on C 9 C 9 and C 11 C 11 .
Figure 12. f on C 9 C 9 and C 11 C 11 .
Mathematics 07 01153 g012
Figure 13. Function f on C 11 C 9 .
Figure 13. Function f on C 11 C 9 .
Mathematics 07 01153 g013
Figure 14. f on C 8 C 9 , C 8 C 11 .
Figure 14. f on C 8 C 9 , C 8 C 11 .
Mathematics 07 01153 g014
Figure 15. Function f on C 10 C 9 and C 10 C 11 .
Figure 15. Function f on C 10 C 9 and C 10 C 11 .
Mathematics 07 01153 g015
Table 1. Known results of k-rainbow domination number of C n and C n C m .
Table 1. Known results of k-rainbow domination number of C n and C n C m .
γ rk ( C n ) γ rk ( C m C n ) Check Vizing’s Conjecture
k 5 k 8
([21]) γ r k ( C n ) = n by Corollary 2
γ r k ( C n C m ) = m n γ r k ( C m C n ) = γ r k ( C m ) γ r k ( C n )
5 k 7 ,
by Theorem 5
n 0 ( mod 4 ) , m 0 ( mod 4 )
γ r k ( C n C m ) = k m n 8 γ r k ( C m C n ) < γ r k ( C m ) γ r k ( C n )
5 k 7 ,
by Theorem 7
n 0 ( mod 4 ) or m 0 ( mod 4 ) m , n 15
γ r k ( C n C m ) k m n + n 8 + m γ r k ( C m C n ) γ r k ( C m ) γ r k ( C n )
k = 4 by Theorem 2
([21]) γ r 4 ( C n ) = n γ r 4 ( C n C 3 ) = 2 n γ r 4 ( C n C 3 ) < γ r 4 ( C n ) γ r 4 ( C 3 )
γ r 4 ( C 3 ) = 3 by Theorem 3
n 0 ( mod 4 ) , m 0 ( mod 4 )
γ r 4 ( C n C m ) = m n 2 γ r 4 ( C n C m ) < γ r 4 ( C n ) γ r 4 ( C m )
by Theorem 4
n 0 ( mod 4 ) or m 0 ( mod 4 )
γ r 4 ( C n C m ) m n 2 + m + n 2 1 γ r 4 ( C m C n ) < γ r 4 ( C m ) γ r 4 ( C n )
k = 3 γ r 3 ( C n C m ) γ r 4 ( C n C m )
([16]) γ r 3 ( C n ) = 3 n 4 by Theorem 4 m , n 24
γ r 3 ( C m C n ) m n 2 + m + n 2 1 γ r 3 ( C m C n ) < γ r 3 ( C m ) γ r 3 ( C n )
k = 2
([7]) γ r 2 ( C n ) = n 2 + n 4 n 4
γ r 2 ( C 3 ) = 2
γ r 2 ( C n ) = n 2 , n 0 , 4 , 8 ( mod 12 ) , n 2 + 1 , n 2 , 6 , 10 ( mod 12 ) , n 1 2 + 1 , n 1 , 3 , 5 , 7 , 9 , 11 ( mod 12 ) . ([8]) γ r 2 ( C 3 C n ) = n , n 0 ( mod 6 ) , n + 1 , n 1 , 2 , 3 , 5 ( mod 6 ) , n + 2 , n 4 ( mod 6 ) . n 0 , 1 , 3 , 5 , 7 , 9 , 10 , 11 ( mod 12 ) γ r 2 ( C 3 C n ) = γ r 2 ( C 3 ) γ r 2 ( C n ) , n 2 , 6 ( mod 12 ) γ r 2 ( C 3 C n ) > γ r 2 ( C 3 ) γ r 2 ( C n ) , n 4 , 8 ( mod 12 ) γ r 2 ( C 3 C n ) < γ r 2 ( C 3 ) γ r 2 ( C n ) .
γ r 2 ( C 4 ) = 2 ([11]) γ r 2 ( C 4 C n ) = 3 n 2 , n 0 ( mod 8 ) , 3 n 2 + 1 , n 2 , 4 , 5 ( mod 8 ) , 3 n 2 + 2 , n 1 , 3 , 6 , 7 ( mod 8 ) . γ r 2 ( C 4 C n ) > γ r 2 ( C 4 ) γ r 2 ( C n )
γ r 2 ( C 5 ) = 3 ([9]) γ r 2 ( C 5 C n ) = 2 n γ r 2 ( C 5 C n ) > γ r 2 ( C 5 ) γ r 2 ( C n )
γ r 2 ( C 8 ) = 4 ([11]) γ r 2 ( C 8 C n ) = 3 n γ r 2 ( C 8 C n ) > γ r 2 ( C 8 ) γ r 2 ( C n )
([8]) n 0 ( mod 6 ) , m 0 ( mod 3 ) m , n 13
γ r 2 ( C n C m ) = m n 3 γ r 2 ( C n C m ) γ r 2 ( C n ) γ r 2 ( C m )

Share and Cite

MDPI and ACS Style

Gao, H.; Li, K.; Yang, Y. The k-Rainbow Domination Number of CnCm. Mathematics 2019, 7, 1153. https://doi.org/10.3390/math7121153

AMA Style

Gao H, Li K, Yang Y. The k-Rainbow Domination Number of CnCm. Mathematics. 2019; 7(12):1153. https://doi.org/10.3390/math7121153

Chicago/Turabian Style

Gao, Hong, Kun Li, and Yuansheng Yang. 2019. "The k-Rainbow Domination Number of CnCm" Mathematics 7, no. 12: 1153. https://doi.org/10.3390/math7121153

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop