Pythagorean 2-Tuple Linguistic VIKOR Method for Evaluating Human Factors in Construction Project Management
Abstract
:1. Introduction
2. Preliminaries
2.1. Pythagorean 2-Tuple Linguistic Sets
2.2. Pythagorean 2-Tuple Linguistic Arithmetic Aggregation Operators
3. VIKOR Method for P2TL MADM Problems
4. Numerical Example and Comparative Analysis
4.1. Numerical Example
4.2. Comparative Analyses
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ning, X.; Wang, L.G. Construction Site Layout Evaluation by Intuitionistic Fuzzy TOPSIS Model. In Frontiers of Green Building, Materials and Civil Engineering; Sun, D., Sung, W.P., Chen, R., Eds.; Scientific.net: Baech, Switzerland, 2011; Volumes 71–78, pp. 583–588. [Google Scholar]
- Lu, Y. Research of models and methods of construction project information management with 2-tuple linguistic information. Inf. Int. Interdiscip. J. 2012, 15, 3911–3916. [Google Scholar]
- Gu, X.; Zhao, P.; Wang, Y. Models for multiple attribute decision making based on the Einstein correlated aggregation operators with interval-valued intuitionistic fuzzy information. J. Intell. Fuzzy Syst. 2014, 26, 2047–2055. [Google Scholar]
- Wu, S.J.; Wang, J.; Wei, G.W.; Wei, Y. Research on construction engineering project risk assessment with some 2-tuple linguistic neutrosophic hamy mean operators. Sustainability 2018, 10, 1536. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–356. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Li, Z.X.; Gao, H.; Wei, G.W. Methods for multiple attribute group decision making based on intuitionistic fuzzy dombi hamy mean operators. Symmetry 2018, 10, 574. [Google Scholar] [CrossRef]
- Wei, G.W.; Wang, J.; Lu, M.; Wu, J.; Wei, C. Similarity Measures of Spherical Fuzzy Sets Based on Cosine Function and Their Applications. IEEE Access 2019, 7, 159069–159080. [Google Scholar] [CrossRef]
- Wei, G.W. 2-Tuple intuitionistic fuzzy linguistic aggregation operators in multiple attribute decision making. Iran. J. Fuzzy Syst. 2019, 16, 159–174. [Google Scholar]
- Wu, L.P.; Wang, J.; Gao, H. Models for competiveness evaluation of tourist destination with some interval-valued intuitionistic fuzzy Hamy mean operators. J. Intell. Fuzzy Syst. 2019, 36, 5693–5709. [Google Scholar] [CrossRef]
- Gao, H.; Wu, J.; Wei, C.; Wei, G.W. MADM method with Interval-valued Bipolar Uncertain Linguistic Information for Evaluating the Computer Network Security. IEEE Access 2019, 7, 151506–151524. [Google Scholar] [CrossRef]
- Yager, R.R. Pythagorean Fuzzy Subsets. In Proceedings of the Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 24–28 June 2013; pp. 57–61. [Google Scholar]
- Lu, J.P.; Tang, X.Y.; Wei, G.W.; Wei, C.; Wei, Y. Bidirectional project method for dual hesitant Pythagorean fuzzy multiple attribute decision-making and their application to performance assessment of new rural construction. Int. J. Intell. Syst. 2019, 34, 1920–1934. [Google Scholar] [CrossRef]
- Tang, M.; Wang, J.; Lu, J.P.; Wei, G.W.; Wei, C.; Wei, Y. Dual hesitant pythagorean fuzzy heronian mean operators in multiple attribute decision making. Mathematics 2019, 7, 344. [Google Scholar] [CrossRef]
- Wang, J.; Gao, H.; Wei, G.W. The generalized dice similarity measures for Pythagorean fuzzy multiple attribute group decision making. Int. J. Intell. Syst. 2019, 34, 1158–1183. [Google Scholar] [CrossRef]
- Wei, G.W.; Wang, J.; Wei, C.; Wei, Y.; Zhang, Y. Dual hesitant pythagorean fuzzy hamy mean operators in multiple attribute decision making. IEEE Access 2019, 7, 86697–86716. [Google Scholar] [CrossRef]
- Zhang, X.L.; Xu, Z.S. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int. J. Intell. Syst. 2014, 29, 1061–1078. [Google Scholar] [CrossRef]
- Zhang, X.L. Multicriteria Pythagorean fuzzy decision analysis: A hierarchical QUALIFLEX approach with the closeness index-based ranking methods. Inf. Sci. 2016, 330, 104–124. [Google Scholar] [CrossRef]
- Ren, P.J.; Xu, Z.S.; Gou, X.J. Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl. Soft Comput. 2016, 42, 246–259. [Google Scholar] [CrossRef]
- Bolturk, E. Pythagorean fuzzy CODAS and its application to supplier selection in a manufacturing firm. J. Enterp. Inf. Manag. 2018, 31, 550–564. [Google Scholar] [CrossRef]
- Chen, T.Y. Remoteness index-based Pythagorean fuzzy VIKOR methods with a generalized distance measure for multiple criteria decision analysis. Inf. Fusion 2018, 41, 129–150. [Google Scholar] [CrossRef]
- Huang, Y.H.; Wei, G.W. TODIM method for Pythagorean 2-tuple linguistic multiple attribute decision making. J. Intell. Fuzzy Syst. 2018, 35, 901–915. [Google Scholar] [CrossRef]
- Ilbahar, E.; Karasan, A.; Cebi, S.; Kahraman, C. A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Saf. Sci. 2018, 103, 124–136. [Google Scholar]
- Khan, M.S.A.; Abdullah, S.; Ali, M.Y.; Hussain, I.; Farooq, M. Extension of TOPSIS method base on Choquet integral under interval-valued Pythagorean fuzzy environment. J. Intell. Fuzzy Syst. 2018, 34, 267–282. [Google Scholar] [CrossRef]
- Perez-Dominguez, L.; Rodriguez-Picon, L.A.; Alvarado-Iniesta, A.; Cruz, D.L.; Xu, Z.S. MOORA under Pythagorean fuzzy set for multiple criteria decision making. Complexity 2018, 2018, 2602376. [Google Scholar] [CrossRef]
- Xue, W.T.; Xu, Z.S.; Zhang, X.L.; Tian, X.L. Pythagorean fuzzy LINMAP method based on the entropy theory for railway project investment decision making. Int. J. Intell. Syst. 2018, 33, 93–125. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2007, 156, 445–455. [Google Scholar] [CrossRef]
- Benayoun, R.; Roy, B.; Sussman, B. ELECTRE: Une méthode pour guider le choix en présence de points de vue multiples. Rev. Franaise Inf. Rech. Opérationnelle 1966, 3, 31–56. [Google Scholar]
- Mareschal, B.; Brans, J.P.; Vincke, P. Prométhée, a new family of outranking methods in multicriteria analysis. ULB Inst. Repos. 1984. [Google Scholar]
- Wei, G.W.; Wang, H.J.; Lin, R.; Zhao, X.F. Grey relational analysis method for intuitionistic fuzzy multiple attribute decision making with preference information on alternatives. Int. J. Comput. Intell. Syst. 2011, 4, 164–173. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making. In Methods and Applications A State-of-the-Art Survey; Springer: Berlin, Germany, 1981. [Google Scholar]
- Wang, J.; Wei, G.W.; Lu, M. TODIM method for multiple attribute group decision making under 2-tuple linguistic neutrosophic environment. Symmetry 2018, 10, 486. [Google Scholar] [CrossRef]
- Wei, G.W. TODIM method for picture fuzzy multiple attribute decision making. Informatica 2018, 29, 555–566. [Google Scholar] [CrossRef]
- Gomes, L.; Lima, M. TODIM: Basics and application to multicriteria ranking of projects with environmental impacts. Found. Comput. Decis. Sci. 1979, 16, 113–127. [Google Scholar]
- Devi, K. Extension of VIKOR method in intuitionistic fuzzy environment for robot selection. Expert Syst. Appl. 2011, 38, 14163–14168. [Google Scholar] [CrossRef]
- Du, Y.; Liu, P.D. Extended fuzzy VIKOR method with intuitionistic trapezoidal fuzzy numbers. Inf. Int. Interdiscip. J. 2011, 14, 2575–2583. [Google Scholar]
- Park, J.H.; Cho, H.J.; Kwun, Y.C. Extension of the VIKOR method for group decision making with interval-valued intuitionistic fuzzy information. Fuzzy Optim. Decis. Mak. 2011, 10, 233–253. [Google Scholar] [CrossRef]
- Chatterjee, K.; Kar, M.B.; Kar, S. Strategic Decisions Using Intuitionistic Fuzzy Vikor Method for Information System (IS) Outsourcing. In Proceedings of the 2013 International Symposium on Computational and Business Intelligence, New Delhi, India, 24–26 August 2013; pp. 123–126. [Google Scholar]
- Liao, H.C.; Xu, Z.S. A VIKOR-based method for hesitant fuzzy multi-criteria decision making. Fuzzy Optim. Decis. Mak. 2013, 12, 373–392. [Google Scholar] [CrossRef]
- Liu, H.C.; Liu, L.; Wu, J. Material selection using an interval 2-tuple linguistic VIKOR method considering subjective and objective weights. Mater. Des. 2013, 52, 158–167. [Google Scholar] [CrossRef]
- Wei, G.; Zhang, N.A. A multiple criteria hesitant fuzzy decision making with shapley value-based VIKOR method. J. Intell. Fuzzy Syst. 2014, 26, 1065–1075. [Google Scholar]
- Bausys, R.; Zavadskas, E.K. Multicriteria decision making approach by VIKOR under interval neutrosophic set environment. Econ. Comput. Econ. Cybern. Stud. Res. 2015, 49, 33–48. [Google Scholar]
- Dammak, F.; Baccour, L.; Alimi, A.M. A comparative analysis for multi-attribute decision making methods: TOPSIS, AHP, VIKOR using intuitionistic fuzzy sets. In Proceedings of the 2015 IEEE International Conference on Fuzzy Systems, Istanbul, Turkey, 2–5 August 2015. [Google Scholar]
- Liao, H.C.; Xu, Z.S. Approaches to manage hesitant fuzzy linguistic information based on the cosine distance and similarity measures for HFLTSs and their application in qualitative decision making. Expert Syst. Appl. 2015, 42, 5328–5336. [Google Scholar] [CrossRef]
- You, X.Y.; You, J.X.; Liu, H.C.; Zhen, L. Group multi-criteria supplier selection using an extended VIKOR method with interval 2-tuple linguistic information. Expert Syst. Appl. 2015, 42, 1906–1916. [Google Scholar] [CrossRef]
- Buyukozkan, G.; Feyzioglu, O.; Gocer, F. Evaluation of Hospital Web Services Using Intuitionistic Fuzzy AHP and Intuitionistic Fuzzy VIKOR. In Proceedings of the 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Bali, Indonesia, 4–7 December 2016; pp. 607–611. [Google Scholar]
- Zhang, F.Y.; Luo, L.; Liao, H.C.; Zhu, T.; Shi, Y.K.; Shen, W.W. Inpatient admission assessment in West China Hospital based on hesitant fuzzy linguistic VIKOR method. J. Intell. Fuzzy Syst. 2016, 30, 3143–3154. [Google Scholar] [CrossRef]
- Hu, J.H.; Pan, L.; Chen, X.H. An interval neutrosophic projection-based VIKOR method for selecting doctors. Cogn. Comput. 2017, 9, 801–816. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.Y.; Wang, J.Q.; Li, L. Picture fuzzy normalized projection-based VIKOR method for the risk evaluation of construction project. Appl. Soft Comput. 2018, 64, 216–226. [Google Scholar] [CrossRef]
- Wei, G.; Lu, M.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Pythagorean 2-tuple linguistic aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2017. [Google Scholar] [CrossRef]
- Wei, G.W. Pythagorean fuzzy interaction aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 2119–2132. [Google Scholar] [CrossRef]
- Herrera, F.; Martinez, L. A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 2000, 8, 746–752. [Google Scholar]
Linguistic Variable | Pythagorean 2-Tuple Linguistic Numbers |
---|---|
Very low (VL) | ((s0, 0), (0.1, 0.8)) |
Low (L) | ((s1, 0), (0.2, 0.7)) |
Medium low (ML) | ((s2, 0), (0.3, 0.6)) |
Medium (M) | ((s3, 0), (0.5, 0.5)) |
Medium high (MH) | ((s4, 0), (0.6, 0.3)) |
High (H) | ((s5, 0), (0.7, 0.2) |
Very high (VH) | ((s6, 0), (0.8, 0.1)) |
M | H | ML | L | |
VL | L | L | VH | |
L | VL | H | M | |
H | MH | ML | VH | |
VH | M | MH | VL |
M | MH | H | ML | |
L | VL | L | H | |
H | M | M | VL | |
VH | ML | M | MH | |
ML | H | H | M |
MH | VL | L | MH | |
M | VH | ML | L | |
ML | H | H | L | |
L | M | H | VH | |
VL | M | MH | VL |
<(s3, 0.33), (0.5369, 0.5165)> | <(s3, −0.03), (0.555, 0.5879)> | |
<(s1, 0.37), (0.3274, 0.6947)> | <(s2, 0.27), (0.5452, 0.4297)> | |
<(s3, −0.15), (0.5082, 0.4583)> | <(s3, −0.21), (0.5332, 0.4518)> | |
<(s4, 0.06), (0.6705, 0.3706)> | <(s3, −0.09), (0.4786, 0.6552)> | |
<(s3, −0.5), (0.5338, 0.7651)> | <(s4, −0.24), (0.5935, 0.4316)> | |
<(s3, −0.19), (0.5067, 0.4823)> | <(s2, 0.37), (0.4209, 0.5535)> | |
<(s1, 0.33), (0.2383, 0.7378)> | <(s4, −0.03), (0.6573, 0.4823)> | |
<(s4, 0.24), (0.6399, 0.4518)> | <(s1, 0.2), (0.3095, 0.8167)> | |
<(s3, 0.37), (0.5491, 0.4518)> | <(s5, 0.24), (0.743, 0.296)> | |
<(s4, 0.38), (0.6426, 0.3646)> | <(s1, 0.14), (0.3303, 0.7139)> |
Methods | Order |
---|---|
P2TLWA | |
P2TLWG | |
P2TL-TODIM | |
P2TL-VIKOR |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, T.; Wei, G.; Lu, J.; Wei, C.; Lin, R. Pythagorean 2-Tuple Linguistic VIKOR Method for Evaluating Human Factors in Construction Project Management. Mathematics 2019, 7, 1149. https://doi.org/10.3390/math7121149
He T, Wei G, Lu J, Wei C, Lin R. Pythagorean 2-Tuple Linguistic VIKOR Method for Evaluating Human Factors in Construction Project Management. Mathematics. 2019; 7(12):1149. https://doi.org/10.3390/math7121149
Chicago/Turabian StyleHe, Tingting, Guiwu Wei, Jianping Lu, Cun Wei, and Rui Lin. 2019. "Pythagorean 2-Tuple Linguistic VIKOR Method for Evaluating Human Factors in Construction Project Management" Mathematics 7, no. 12: 1149. https://doi.org/10.3390/math7121149
APA StyleHe, T., Wei, G., Lu, J., Wei, C., & Lin, R. (2019). Pythagorean 2-Tuple Linguistic VIKOR Method for Evaluating Human Factors in Construction Project Management. Mathematics, 7(12), 1149. https://doi.org/10.3390/math7121149