A Note on Some Identities of New Type Degenerate Bell Polynomials
Abstract
1. Introduction
2. New Type Degenerate Bell Numbers and Polynomials
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carlitz, L. Degenerate Stirling, Bernoulli and Eulerian numbers. Util. Math. 1979, 15, 51–88. [Google Scholar]
- Dolgy, D.V.; Jang, G.-W.; Kim, T. A note on degenerate central factorial polynomials of the second kind. Adv. Stud. Contemp. Math. (Kyungshang) 2019, 29, 7–13. [Google Scholar]
- Jeong, J.; Rim, S.-H.; Kim, B.M. On finite-times degenrate Cauthy numbers and polynomials. Adv. Diff. Equ. 2015, 321, 12. [Google Scholar]
- Kim, D.S.; Kim, T.; Jang, G.-W. A note on degenerate Stirling numbers of the first kind. Proc. Jangjeon Math. Soc. 2018, 21, 393–404. [Google Scholar]
- Kim, T.; Kim, D.S. Degenerate central factorial numbers of the second kind. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas 2019, 113, 3359–3367. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Jang, L.-C.; Kwon, H.-I. Extended degenerate Stirling numbers of the second kind and extended degenerate Bell polynomials. Util. Math. 2018, 106, 11–21. [Google Scholar]
- Kim, T. A note on degenerate Stirling numbers of the second kind. Proc. Jangjeon Math. Soc. 2017, 20, 319–331. [Google Scholar]
- Lee, J.G.; Kim, W.J.; Jang, L.-C.; Kim, B.M. A note on modified degenerate q-Daehee polynomials and numbers. J. Inequal. Appl. 2019, 2019, 24. [Google Scholar] [CrossRef]
- Pyo, S.S. Degenerate Cauthy numbers and polynomials of the fourth kind. Adv. Stud. Contemp. Math. (Kyungshang) 2018, 28, 127–138. [Google Scholar]
- Kim, T.; Jang, G.-W. A note on degenerate gamma function and degenerate Stirling number of the second kind. Adv. Stud. Contemp. Math. (Kyungshang) 2018, 28, 207–214. [Google Scholar]
- Kim, T.; Kim, D.S. Degenerate Laplace transform and degenerate gamma function. Russ. J. Math. Phys. 2017, 24, 241–248. [Google Scholar] [CrossRef]
- Bell, E.T. Exponential polynomials. Ann. Math. 1934, 35, 258–277. [Google Scholar] [CrossRef]
- Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions; Translated from the Frech by J.W. Nienhuys; Reidel: Dordrecht, The Netherlands; Boston, MA, USA, 1974. [Google Scholar]
- Kim, T.; Kim, D.S.; Dolgy, D.V. On partially degenerate Bell numbers and polynomials. Proc. Jangjeon Math. Soc. 2017, 20, 337–345. [Google Scholar]
- Kim, T.; Kim, D.S.; Kwon, H.-I.; Rim, S.-H. Some identities for umbral calculus associated with partially degenerate Bell numbers and polynomials. J. Nonlinear Sci. Appl. 2017, 10, 2966–2975. [Google Scholar] [CrossRef][Green Version]
- Brillhart, J. Mathematical Notes: Note on the Single variable Bell polynomials. Am. Math. Mon. 1967, 74, 695–696. [Google Scholar] [CrossRef]
- Brarman, F. On Touchard polynomials. Can. J. 1957, 9, 191–193. [Google Scholar]
- Carlitz, L. Some arithmetic properties of the Bell polynomials. Bull. Am. Math. Soc. 1965, 71, 143–144. [Google Scholar] [CrossRef][Green Version]
- Carlitz, L. Arithmetic properties of the Bell polynomials. J. Math. Anal. Appl. 1966, 15, 33–52. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. Some identities of Bell polynomials. Sci. China Math. 2015, 58, 2095–2104. [Google Scholar] [CrossRef]
- Roman, S. The Umbral Calculus, Pure and Applied Mathematics; Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers]: New York, NY, USA, 1984. [Google Scholar]
- He, Y.; Pan, J. Some recursion formulae for the number of derangements and Bell numbers. J. Math. Res. Appl. 2016, 36, 15–22. [Google Scholar]
- Shang, Y. Localized recovery of complex networks against failure. Sci. Rep. 2016, 6, 30521. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y. False positive and false negative effects on network attacks. J. Stat. Phys. 2018, 170, 141–164. [Google Scholar] [CrossRef]
- Zhang, W. Some identities involving the Euler and the central factorial numbers. Fibonacci Quart. 1998, 36, 154–157. [Google Scholar]
- Shang, Y. Deffuant model with general opinion distributions: First impression and critical confidence bound. Complexity 2013, 19, 38–49. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Kim, D.S.; Lee, H.; Kwon, J. A Note on Some Identities of New Type Degenerate Bell Polynomials. Mathematics 2019, 7, 1086. https://doi.org/10.3390/math7111086
Kim T, Kim DS, Lee H, Kwon J. A Note on Some Identities of New Type Degenerate Bell Polynomials. Mathematics. 2019; 7(11):1086. https://doi.org/10.3390/math7111086
Chicago/Turabian StyleKim, Taekyun, Dae San Kim, Hyunseok Lee, and Jongkyum Kwon. 2019. "A Note on Some Identities of New Type Degenerate Bell Polynomials" Mathematics 7, no. 11: 1086. https://doi.org/10.3390/math7111086
APA StyleKim, T., Kim, D. S., Lee, H., & Kwon, J. (2019). A Note on Some Identities of New Type Degenerate Bell Polynomials. Mathematics, 7(11), 1086. https://doi.org/10.3390/math7111086