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Abstract: Recently, the partially degenerate Bell polynomials and numbers, which are a degenerate
version of Bell polynomials and numbers, were introduced. In this paper, we consider the new
type degenerate Bell polynomials and numbers, and obtain several expressions and identities on
those polynomials and numbers. In more detail, we obtain an expression involving the Stirling
numbers of the second kind and the generalized falling factorial sequences, Dobinski type formulas,
an expression connected with the Stirling numbers of the first and second kinds, and an expression
involving the Stirling polynomials of the second kind.
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1. Introduction

Studies on degenerate versions of some special polynomials can be traced back at least as early as
the paper by Carlitz [1] on degenerate Bernoulli and degenerate Euler polynomials and numbers.
In recent years, many mathematicians have drawn their attention in investigating various degenerate
versions of quite a few special polynomials and numbers and discovered some interesting results on
them [2–9]. This idea of introducing various degenerate versions of some special polynomials and
numbers has been not only applied to polynomials but also extended to transcendental functions, so
that for example, the degenerate gamma functions were introduced in [10,11].

Indeed, for each real number λ > 0, and any complex number s satisfying 0 < Re(s) < 1
λ ,

the degenerate gamma function Γλ(s) is defined by

Γλ(s) =
∫ ∞

0
(1 + λt)−

1
λ ts−1dt.

Then, among many properties of them, let us mention only one of them, namely, for any positive
integer k and any real number λ satisfying 0 < λ < 1

k ,

Γλ(k) =
(k− 1)!

(1− λ)(1− 2λ) · · · (1− kλ)
.

Bell polynomials Bn(x) (see Equation (1)) are named after E. T. Bell [12] and also called exponential
polynomials or Touchard polynomials. Bell polynomials together with their multivariate versions,

Mathematics 2019, 7, 1086; doi:10.3390/math7111086 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://www.mdpi.com/2227-7390/7/11/1086?type=check_update&version=1
http://dx.doi.org/10.3390/math7111086
http://www.mdpi.com/journal/mathematics


Mathematics 2019, 7, 1086 2 of 12

namely the partial and complete Bell polynomials, have diverse applications not only in mathematics
but also in physics and engineering as well [13].

For instance, the celebrated Faà di Bruno formula is given by

dn

dtn f ◦ g(t) =
n

∑
k=0

f (k)
(

g(t)
)

Bn,k(g′(t), g′′(t), · · · , g(n−k+1)(t)),

which gives an explicit formula for higher derivatives of composite functions. Here the partial Bell
polynomials Bn,k(x1, x2, · · · xn−k+1) are defined by

Bn,k(x1, x2, · · · xn−k+1) = ∑
n!

∏n−k+1
l=1 il !

n−k+1

∏
l=1

( xl
l!

)il
, (n ≥ k ≥ 0),

where the sum runs over all nonnegative integers i1, i2, · · · , in−k+1, satisfying i1 + i2 + · · ·+ in−k+1 = k,
and i1 + 2i2 + · · · (n− k + 1)in−k+1 = n, (see [13] p. 133).

In the previous paper, the partially degenerate Bell polynomials βn,λ(x), which are a degenerate
version of Bell polynomials, were introduced (see Equation (3)) and some interesting identities on
them were obtained in connection with Stirling numbers of the first and second kinds [14]. Further,
in [15] the umbral calculus techniques were employed in order to derive some properties, explicit
expressions and representations of them in terms of other special polynomials.

In the present paper, the new type degenerate Bell polynomials Bn(x|λ), which are another
degenerate version of Bell polynomials, are introduced and several expressions and identities on them
are obtained.

As we have witnessed in recent years, studying some degenerate versions of certain special
polynomials and numbers is a promising area of research that there are still many things yet to be
uncovered.

In the rest of this section, we are going to review some necessary known definitions and results
that will be needed throughout this paper.

As is well known, the ordinary Bell polynomials are given by (see [12,14,16–21])

ex(et−1) =
∞

∑
n=0

Bn(x)
tn

n!
. (1)

When x = 1, Bn = Bn(1) are called Bell numbers. For λ ∈ R, the degenerate exponential function
ex

λ(t) is defined as (see [1,2,4–7,10,11])

ex
λ(t) = (1 + λt)

x
λ , eλ(t) = e1

λ(t). (2)

In [14], the partially degenerate Bell polynomials are defined by the generating function to be

ex(eλ(t)−1) =
∞

∑
n=0

βn,λ(x)
tn

n!
. (3)

Note that lim
λ→0

βn,λ(x) = Bn(x), (n ≥ 0). When x = 1, βn,λ = βn,λ(1) are called degenerate Bell

numbers. It is well known that the Stirling polynomials of the second kind are defined by (see [7,13])

(x + y)n =
n

∑
k=0

S2(n, k|x)(y)n, (n ≥ 0), (4)

where (y)0 = 1, (y)n = y(y− 1)(y− 2) · · · (y− n + 1), (n ≥ 1).
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When x = 0, S2(n, k) = S2(n, k|0), (n, k ≥ 0), are called the Stirling numbers of the second kind.
From Equation (4), we can easily derive the generating function for the Stirling polynomials of the
second kind given by (see [3,8,9,21,22])

1
k!
(et − 1)kext =

∞

∑
n=k

S2(n, k|x) tn

n!
, (5)

where k is a nonnegative integer. Here we mention that the generating function has also played an
important role in percolation theory. See the two seminal works [23,24].

For k ≥ 0, the central factorial numbers of the second kind are defined by (see [2,5,13,21,25])

1
k!
(
e

t
2 − e−

t
2
)k

=
∞

∑
n=k

T(n, k)
tn

n!
. (6)

In [7], Kim considered the degenerate Stirling polynomials of the second kind given by

1
k!
(
eλ(t)− 1)kex

λ(t) =
∞

∑
n=k

S2,λ(n, k|x) tn

n!
. (7)

When x = 0, S2,λ = S2,λ(n, k|0) are called the degenerate Stirling numbers of the second kind. In
view of Equation (6), the degenerate central factorial numbers of the second kind are given by (see [5])

1
k!
(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

=
∞

∑
n=k

T2,λ(n, k)
tn

n!
. (8)

Note that lim
λ→0

T2,λ(n, k) = T(n, k), (n, k ≥ 0).

From Equations (1) and (5), we easily note that (see [21])

Bn(x) = e−x
∞

∑
m=0

xm mn

m!
=

n

∑
m=0

xmS2(n, m), (n ≥ 0). (9)

For n ≥ 0, the Stirling numbers of the first kind are defined as (see [21])

(x)n =
n

∑
k=0

S1(n, k)xk. (10)

Thus, by Equation (10), we easily get (see [21])

1
k!
(

log(1 + t)
)k

=
∞

∑
n=k

S1(n, k)
tn

n!
, (11)

where k is a nonnegative integer. It is easy to see that

xn =
n

∑
k=0

S1(n, k)Bk(x), (k ≥ 0). (12)

From Equation (2), we can derive the inverse function of eλ(t) given by

logλ(t) =
1
λ
(tλ − 1), eλ

(
logλ(t)

)
= t. (13)
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By Equation (11), the degenerate Stirling numbers of the first kind are given by (see [4])

1
k!
(

logλ(1 + t)
)k

=
∞

∑
n=k

S1,λ(n, k)
tn

n!
, (14)

where k is a nonnegative integer. Note that lim
λ→0

S1,λ(n, k) = S1(n, k), (n, k ≥ 0).

In this paper, we study the new type degenerate Bell numbers and polynomials and we give some
new identities for those polynomials and numbers.

2. New Type Degenerate Bell Numbers and Polynomials

For λ ∈ R, the falling factorial sequence is defined by

(x)0,λ = 1, (x)n,λ = x(x− λ) · · · (x− (n− 1)λ), (n ≥ 1).

From Equation (3), we note that

ext =
∞

∑
m=0

βm,λ(x)
1

m!
(

logλ(1 + t)
)m

=
∞

∑
n=0

( n

∑
m=0

βm,λ(x)S1,λ(n, m)

)
tn

n!
.

Thus, we have

xn =
n

∑
m=0

βm,λ(x)S1,λ(n, m), (n ≥ 0). (15)

On the other hand,

ex(eλ(t)−1) =
∞

∑
m=0

xm 1
m!
(
eλ(t)− 1

)m
=

∞

∑
n=0

( n

∑
m=0

xmS2,λ(n, m)

)
tn

n!
. (16)

By Equations (3) and (16), we get

βn,λ(x) =
n

∑
m=0

xmS2,λ(n, m) = e−x
∞

∑
m=0

xm (m)n,λ

m!
, (n ≥ 0). (17)

Indeed, from Equation (3), we have

∞

∑
n=0

βn,λ(x)
tn

n!
= e−xexeλ(t) = e−x

∞

∑
m=0

1
m!

xmem
λ (t)

= e−x
∞

∑
m=0

1
m!

xm(1 + λt)
m
λ

= e−x
∞

∑
m=0

1
m!

xm
∞

∑
n=0

(m)n,λ
tn

n!

=
∞

∑
n=0

(
e−x

∞

∑
m=0

xm (m)n,λ

m!
) tn

n!
.
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We observe that

∞

∑
n=0

βn,λ(x)
tn

n!
= ex(eλ(t)−1) = ex

(
e1/2

λ (t)−e−1/2
λ (t)

)
e1/2

λ (t) (18)

=
∞

∑
m=0

xm 1
m!

(
e

1
2
λ (t)− e−

1
2

λ (t)
)m

e
m
2

λ (t)

=
∞

∑
m=0

xm
∞

∑
n=m

( n

∑
k=m

(
n
k

)
T2,λ(k, m)

(
m
2

)
n−k,λ

)
tn

n!

=
∞

∑
n=0

( n

∑
m=0

n

∑
k=m

(
n
k

)
xmT2,λ(k, m)

(
m
2

)
n−k,λ

)
tn

n!
.

Comparing the coefficients on both sides of Equation (18), we have

βn,λ(x) =
n

∑
m=0

n

∑
k=m

(
n
k

)
xmT2,λ(k, m)

(
m
2

)
n−k,λ

, (n ≥ 0). (19)

Note that

Bn(x) = lim
λ→0

βn,λ(x) =
n

∑
m=0

n

∑
k=m

(
n
k

)
xmT2(k, m)

(
m
2

)n−k

.

Proposition 1. For n ≥ 0, we have

βn,λ(x) =
n

∑
m=0

n

∑
k=m

(
n
k

)
xmT2,λ(k, m)

(
m
2

)
n−k,λ

.

From (3), we have

ex(et−1) =
∞

∑
m=0

βm,λ(x)λ−m 1
m!

(eλt − 1)m =
∞

∑
m=0

βm,λ(x)λ−m
∞

∑
n=m

S2(n, m)λn tn

n!
. (20)

=
∞

∑
n=0

( n

∑
m=0

βm,λ(x)λn−mS2(n, m)

)
tn

n!
.

Therefore, by Equations (1) and (20), we obtain the following proposition.

Proposition 2. For n ≥ 0, we have

Bn(x) =
n

∑
m=0

βm,λ(x)λn−mS2(n, m).

By Equation (1), we get

ex(eλ(t)−1) =
∞

∑
m=0

Bm(x)λ−m 1
m!
(

log(1 + λt)
)m. (21)

=
∞

∑
m=0

Bm(x)λ−m
∞

∑
n=m

S1(n, m)λn tn

n!

=
∞

∑
n=0

( n

∑
m=0

Bm(x)λn−mS1(n, m)

)
tn

n!
.

Therefore, by Equations (3) and (21), we obtain the following proposition.
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Proposition 3. For n ≥ 0, we have

βn,λ(x) =
n

∑
m=0

Bm(x)λn−mS1(n, m).

In view of Equation (3), we may define the new type degenerate Bell polynomials, Bn(x|λ), (n ≥ 0),
by We would like to use the italic for the notation as a definition term.

ex
λ(e

t − 1) =
(
1 + λ(et − 1)

) x
λ =

∞

∑
n=0

Bn(x|λ) tn

n!
. (22)

When x = 1, Bn(1|λ) are called the new type degenerate Bell numbers. Note that

∞

∑
n=0

lim
λ→0

Bn(x|λ) tn

n!
= lim

λ→0
ex

λ(e
t − 1) = lim

λ→0

(
1 + λ(et − 1)

) x
λ

= ex(et−1) =
∞

∑
n=0

Bn(x)
tn

n!

By comparing the coefficients on both sides, we get

lim
λ→0

Bn(x|λ) = Bn(x), (n ≥ 0).

By Equation (22), we get

ex
λ(e

t − 1) =
(
1 + λ(et − 1)

) x
λ =

∞

∑
k=0

(x)k,λ
1
k!
(et − 1)k (23)

=
∞

∑
k=0

(x)k,λ

∞

∑
n=k

S2(n, k)
tn

n!

=
∞

∑
n=0

( n

∑
k=0

(x)k,λS2(n, k)
)

tn

n!
.

Therefore, by Equations (22) and (23), we obtain the following theorem.

Theorem 1. For n ≥ 0, we have

Bn(x|λ) =
n

∑
k=0

S2(n, k)(x)k,λ.

In particular,

Bn(1|λ) =
n

∑
k=0

S2(n, k)(1)k,λ.
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We observe that

ex
λ(e

t − 1) = e
x
λ log(1+λ(et−1)) =

∞

∑
m=0

(
x
λ

)m 1
m!
(

log(1 + λ(et − 1))
)m (24)

=
∞

∑
m=0

(
x
λ

)m ∞

∑
l=m

S1(l, m)λl 1
l!
(et − 1)l

=
∞

∑
l=0

l

∑
m=0

xmλl−mS1(l, m)
∞

∑
n=l

S2(n, l)
tn

n!

=
∞

∑
n=0

( n

∑
l=0

l

∑
m=0

xmλl−mS1(l, m)S2(n, l)
)

tn

n!
.

Therefore, by Equations (22) and (24), we obtain the following theorem.

Theorem 2. For n ≥ 0, we have

Bn(x|λ) =
n

∑
l=0

l

∑
m=0

xmλl−mS1(l, m)S2(n, l).

In particular,

Bn(1|λ) =
n

∑
l=0

l

∑
m=0

λl−mS1(l, m)S2(n, l).

From Equation (22), we note that

∞

∑
n=0

Bn(x|λ) tn

n!
= ex

λ(e
t − 1) =

(
1 + λ(et − 1)

) x
λ (25)

=
∞

∑
l=0

(x)l,λ
1
l!
(et − 1)l =

∞

∑
l=0

(x)l,λ
1
l!

l

∑
m=0

(
l
m

)
(−1)l−memt

=
∞

∑
l=0

(x)l,λ
1
l!

l

∑
m=0

(
l
m

)
(−1)l−m

∞

∑
n=0

mn tn

n!

=
∞

∑
n=0

( ∞

∑
l=0

l

∑
m=0

1
l!

(
l
m

)
(−1)l−m(x)l,λmn

)
tn

n!
.

Comparing the coefficients on both sides of Equation (25), we obtain the following theorem.

Theorem 3 (Dobiniski type formula). For n ≥ 0, we have

Bn(x|λ) =
∞

∑
l=0

l

∑
m=0

1
l!

(
l
m

)
(−1)l−m(x)l,λmn.

In particular,

Bn(1|λ) =
∞

∑
l=0

l

∑
m=0

1
l!

(
l
m

)
(−1)l−m(1)l,λmn.

Note that

lim
λ→0

Bn(x|λ) =
∞

∑
l=0

l

∑
m=0

1
l!

(
l
m

)
(−1)l−mxlmn = e−x

∞

∑
k=0

kn

k!
xk = Bn(x).
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By Equation (22), we get

∞

∑
n=1

Bn(x|λ) tn−1

(n− 1)!
=

∂

∂t
ex

λ(e
t − 1) =

∂

∂t
(
1 + λ(et − 1)

) x
λ (26)

= xet(1 + λ(et − 1)
) x−λ

λ = xetex−λ
λ (et − 1)

= x
∞

∑
l=0

(x− λ)l,λ
1
l!
(et − 1)l

∞

∑
m=0

tm

m!

= x
∞

∑
l=0

(x− λ)l,λ

∞

∑
k=l

S2(k, l)
tk

k!

∞

∑
m=0

tm

m!

= x
∞

∑
k=0

k

∑
l=0

(x− λ)l,λS2(k, l)
tk

k!

∞

∑
m=0

tm

m!

=
∞

∑
n=0

(
x

n

∑
k=0

k

∑
l=0

(
n
k

)
(x− λ)l,λS2(k, l)

)
tn

n!
.

Thus, we have

∞

∑
n=0

Bn+1(x|λ) tn

n!
=

∞

∑
n=0

(
x

n

∑
k=0

k

∑
l=0

(
n
k

)
(x− λ)l,λS2(k, l)

)
tn

n!
. (27)

Therefore, by comparing the coefficients on both sides of Equation (27), we obtain the
following theorem.

Theorem 4. For n ≥ 0, we have

Bn+1(x|λ) = x
n

∑
k=0

k

∑
l=0

(
n
k

)
(x− λ)l,λS2(k, l) = x

n

∑
k=0

(
n
k

)
Bk(x− λ|λ).

In particular,

Bn+1(1|λ) =
n

∑
k=0

(
n
k

)
Bk(1− λ|λ).

Note that

Bn+1(x) = lim
λ→0

Bn+1(x|λ) = x
n

∑
k=0

(
n
k

)
Bk(x).

For n ∈ N, by Theorem 3, we get

Bn(x|λ) =
∞

∑
l=1

l

∑
m=1

(
l
m

)
(−1)l−mmn 1

l!
(x)l,λ

=
∞

∑
l=1

l−1

∑
m=0

(
l

m + 1

)
(−1)l−1−m(m + 1)n 1

l!
(x)l,λ (28)

=
∞

∑
l=1

l−1

∑
m=0

1
(m + 1)!(l −m− 1)!

(−1)l−1−m(m + 1)n(x)l,λ

=
∞

∑
l=0

l

∑
m=0

1
m!(l −m)!

(−1)l−m(m + 1)n−1(x)l+1,λ

=
∞

∑
l=0

(
1
l!

l

∑
m=0

(
l
m

)
(−1)l−m(m + 1)n−1

)
(x)l+1,λ.
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From Equation (5), we note that

∞

∑
n=l

S2(n, l|1) tn

n!
=

1
l!
(et − 1)let =

1
l!

l

∑
m=0

(
l
m

)
(−1)l−memt · et (29)

=
1
l!

l

∑
m=0

(
l
m

)
(−1)l−me(m+1)t

=
∞

∑
n=0

(
1
l!

l

∑
m=0

(
l
m

)
(−1)l−m(m + 1)n

)
tn

n!
.

By comparing the coefficients on both sides of Equation (29), we get

1
l!

l

∑
m=0

(
l
m

)
(−1)l−m(m + 1)n =

{
S2(n, l|1), if n ≥ l,

0, if n < l.
(30)

From Equations (28) and (30), we have

Bn(x|λ) =
n−1

∑
l=0

S2(n− 1, l|1)(x)l+1,λ =
n

∑
l=1

S2(n− 1, l − 1|1)(x)l,λ. (31)

Therefore, by Equation (31), we obtain the following theorem.

Theorem 5. For n ∈ N, we have

Bn(x|λ) =
n

∑
l=1

S2(n− 1, l − 1|1)(x)l,λ.

In particular,

Bn(1|λ) =
n

∑
l=1

S2(n− 1, l − 1|1)(1)l,λ.

Note that

Bn(x) = lim
λ→0

Bn(x|λ) = x
n−1

∑
l=0

S2(n− 1, l|1)xl =
n

∑
l=1

S2(n− 1, l − 1|1)xl .

By replacing t by log(1 + t) in Equation (22), we get

ex
λ(t) =

∞

∑
m=0

Bm(x|λ) 1
m!
(

log(1 + t)
)m

=
∞

∑
m=0

Bm(x|λ)
∞

∑
n=m

S1(n, m)
tn

n!
(32)

=
∞

∑
n=0

( n

∑
m=0

S1(n, m)Bm(x|λ)
)

tn

n!
.

On the other hand,

ex
λ(t) =

∞

∑
n=0

(x)n,λ
tn

n!
. (33)

Therefore, by Equations (32) and (33), we obtain the following theorem.

Theorem 6. For n ≥ 0, we have

(x)n,λ =
n

∑
m=0

S1(n, m)Bm(x|λ).

Note that the identity in Theorem 6 is an inverse to that in Theorem 1.
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We observe that

d
dx

ex
λ(e

t − 1) =
d

dx
e

x
λ log(1+λ(et−1))

=
1
λ

log(1 + λ(et − 1))(1 + λ(et − 1))
x
λ

=
∞

∑
l=1

(−λ)l−1

l
(et − 1)l

∞

∑
k=0

(x)k,λ
1
k!
(et − 1)k (34)

=
∞

∑
m=1

m

∑
l=1

(−λ)l−1

l
(x)m−l,λ

m!
(m− l)!

1
m!

(et − 1)m

=
∞

∑
m=1

m

∑
l=1

(−λ)l−1

l
(x)m−l,λ

m!
(m− l)!

∞

∑
n=m

S2(n, m)
tn

n!

=
∞

∑
n=1

( n

∑
m=1

m

∑
l=1

(−λ)l−1(x)m−l,λ(l − 1)!
(

m
l

)
S2(n, m)

)
tn

n!
.

On the other hand, from Equation (22), we note that

d
dx

ex
λ(e

t − 1) =
∞

∑
n=0

d
dx

Bn(x|λ) tn

n!
. (35)

By Equations (34) and (35), we get

d
dx

Bn(x|λ) =
n

∑
m=1

m

∑
l=1

(−λ)l−1(x)m−l,λ(l − 1)!
(

m
l

)
S2(n, m). (36)

Note that

lim
λ→0

d
dx

Bn(x|λ) = m
n

∑
m=1

xm−1S2(n, m).

Lastly, we would like to compare the new type degenerate Bell polynomials Bn(x|λ) with the
partially degenerate Bell polynomials βn,λ(x). From Theorem 2, we have

Bn(x|λ) =
n

∑
m=0

m

∑
l=0

xlλm−lS1(m, l)S2(n, m). (37)

On the other hand, from Equation (9) and Proposition 3, we obtain

βn,λ(x) =
n

∑
m=0

m

∑
l=0

xlλn−mS1(n, m)S2(m, l). (38)

By simple computations using Equations (37) and (38), we can show that

B0(x|λ) = β0,λ(x) = 1, B1(x|λ) = β1,λ(x) = x,

B2(x|λ) = β2,λ(x) = −xλ + (x2 + x),

B3(x|λ) = β3,λ(x) = 2xλ2 + (−3x2 − 3x)λ + (x3 + 3x2 + x),

B4(x|λ) = − 6xλ3 + (11x2 + 12x)λ2 + (−6x3 − 18x2 − 7x)λ + (x4 + 6x3 + 7x2 + x),

β4,λ(x) = − 6xλ3 + (11x2 + 11x)λ2 + (−6x3 − 18x2 − 6x)λ + (x4 + 6x3 + 7x2 + x),

B5(x|λ) = 24xλ4 + (−50x2 − 60x)λ3 + (35x3 + 110x2 + 50x)λ2

+ (−10x4 − 60x3 − 75x2 − 15x)λ + (x5 + 10x4 + 25x3 + 15x2 + x),

β5,λ(x) = 24xλ4 + (−50x2 − 50x)λ3 + (35x3 + 105x2 + 35x)λ2

+ (−10x4 − 60x3 − 70x2 − 10x)λ + (x5 + 10x4 + 25x3 + 15x2 + x).
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3. Conclusions

In the present paper, the new type degenerate Bell polynomials Bn(x|λ) (see Equation (22)) are
introduced, which are different from the previously defined partially degenerate Bell polynomials
βn,λ(x) (see Equation (3)) and a degenerate version of the ordinary Bell polynomials Bn(x) (see
Equation (1)).

In order to compare some properties of the new type degenerate Bell polynomials with those of
the partially degenerate Bell polynomials, we first reviewed several expressions for the latter which
include an expression involving the degenerate Stirling numbers of the second kind, Dobinski type
formula, and an expression connected with the degenerate central factorial numbers of the second
kind. In addition, we gave identities relating βn,λ(x) to Bn(x).

As to the new type degenerate Bell polynomials, we obtained results which are parallel to those
of the partially degenerate Bell polynomials. Namely, we obtained an expression involving the Stirling
numbers of the second kind and the generalized falling factorial sequences, Dobinski type formulas,
an expression connected with the Stirling numbers of the first and second kinds, and an expression
involving the Stirling polynomials of the second kind. Further, we derived a recursive formula
for them.

As we mentioned in the Introduction, studying degenerate versions of some special polynomials
can be traced back at least as early as the paper [1] by Carlitz and regained interests of many
mathematicians in recent years. It should be noted that the idea of a degenerate version has also been
explored in dynamics [26]. We also noticed that this idea of studying degenerate versions of special
polynomials is not just limited to polynomials but can be extended to transcendental functions like
gamma functions [10,11].

This line of research has been very fruitful, as it was demonstrated, for example, by the
papers [2–9]. We would like to continue this line of research as one of our research projects. In more
detail, we will study degenerate versions of many special polynomials and numbers and those of some
transcendental functions, and investigate their applications to mathematics, physics and engineering
as well as their number theoretic and combinatorial properties.
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