Iterative Methods for Finding Solutions of a Class of Split Feasibility Problems over Fixed Point Sets in Hilbert Spaces
Abstract
:1. Introduction
2. Preliminaries
- (i)
- Lipschitz if there exists such that
- (ii)
- Nonexpansive if
- (iii)
- Firmly nonexpansive if
- (iv)
- Averaged if there is such that
- (v)
- β-inverse strongly monotone (β-ism) if, for a positive real number ,
- (i)
- The composite of finitely many averaged mappings is averaged. In particular, if is -averaged for , , then is α-averaged, where .
- (ii)
- If the mappings are averaged and have a common fixed point, then
- (iii)
- If A is β-ism and , then is firmly nonexpansive.
- (iv)
- A mapping is nonexpansive if and only if is -ism.
- (i)
- for every , exists;
- (ii)
- if a subsequence converges weakly to , then .
3. Main Results
- (A1)
- is a -inverse strongly monotone operator;
- (A2)
- is a maximal monotone operator;
- (A3)
- is a bounded linear operator;
- (A4)
- is a nonexpansive mapping;
- (A5)
- , are nonexpansive mappings;
- (A6)
- is a contraction mapping with coefficient .
3.1. Weak Convergence Theorems
- (i)
- ,
- (ii)
- ,
- (iii)
- ,
3.2. Strong Convergence Theorems
- (i)
- ;
- (ii)
- and .
4. Some Deduced Results
- (i)
- ,
- (ii)
- ,
- (iii)
- ,
- (i)
- ;
- (ii)
- and .
- (i)
- ,
- (ii)
- ,
- (iii)
- ,
- (i)
- ;
- (ii)
- and .
- (i)
- ,
- (ii)
- ,
- (iii)
- ,
- (i)
- ;
- (ii)
- and .
5. Applications
5.1. Variational Inequality Problem
- (i)
- ,
- (ii)
- ,
- (iii)
- ,
- (i)
- ;
- (ii)
- and .
5.2. Convex Minimization Problem
- (i)
- ,
- (ii)
- ,
- (iii)
- ,
- (i)
- ;
- (ii)
- and .
5.3. Split Common Fixed Point Problem
- (i)
- ,
- (ii)
- ,
- (iii)
- ,
- (i)
- ;
- (ii)
- and .
6. Numerical Experiments
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Censor, Y.; Elfving, T. A multiprojection algorithm using Bregman projections in product space. Numer. Algorithms 1994, 8, 221–239. [Google Scholar] [CrossRef]
- Byrne, C. Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 2002, 18, 441–453. [Google Scholar] [CrossRef]
- Byrne, C. A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 2004, 20, 103–120. [Google Scholar] [CrossRef]
- Censor, Y.; Bortfeld, T.; Martin, B.; Trofimov, A. A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 2006, 51, 2353–2365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.K. Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 2010, 26, 17. [Google Scholar] [CrossRef]
- Martinet, B. Régularisation d’inéquations variationnelles par approximations successives. Rev. Fr. D’Informatique Rech. OpéRationnelle 1970, 3, 154–158. [Google Scholar]
- Eckstein, J.; Bertsckas, D.P. On the Douglas Rachford splitting method and the proximal point algorithm for maximal monotone operators. Appl. Math. Mech. Engl. Math. Program. 1992, 55, 293–318. [Google Scholar] [CrossRef]
- Marino, G.; Xu, H.K. Convergence of generalized proximal point algorithm. Commun. Pure Appl. Anal. 2004, 3, 791–808. [Google Scholar]
- Xu, H.K. Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 2002, 66, 240–256. [Google Scholar] [CrossRef]
- Yao, Y.; Noor, M.A. On convergence criteria of generalized proximal point algorithms. J. Comput. Appl. Math. 2008, 217, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Byrne, C.; Censor, Y.; Gibali, A.; Reich, S. Weak and strong convergence of algorithms for the split common null point problem. J. Nonlinear Convex Anal. 2012, 13, 759–775. [Google Scholar]
- Cegielski, A. Iterative Methods for Fixed Point Problems in Hilbert Spaces, Lecture Notes in Mathematic 2057; Springer: Heidelberg, Germany, 2012; pp. 154–196. [Google Scholar]
- Rockafellar, R.T. Monotone operators and the proximal point algorithm. Siam J. Control Optim. 1976, 14, 877–898. [Google Scholar] [CrossRef]
- Zhang, L.; Hao, Y. Fixed point methods for solving solutions of a generalized equilibrium problem. J. Nonlinear Sci. Appl. 2016, 9, 149–159. [Google Scholar] [CrossRef]
- Takahashi, W.; Xu, H.K.; Yao, J.C. Iterative methods for generalized split feasibility problems in Hilbert spaces. Set Valued Var. Anal. 2015, 23, 205–221. [Google Scholar] [CrossRef]
- Boikanyo, O.A. The viscosity approximation forward-backward splitting method for zeros of the sum of monotone operators. Abstr. Appl. Anal. 2016, 2016, 10. [Google Scholar] [CrossRef]
- Moudafi, A.; Thera, M. Finding a zero of the sum of two maximal monotone operators. J. Optim. Theory Appl. 1997, 94, 425–448. [Google Scholar] [CrossRef]
- Qin, X.; Cho, S.Y.; Wang, L. A regularization method for treating zero points of the sum of two monotone operators. Fixed Point Theory A 2014, 2014, 10. [Google Scholar] [CrossRef]
- Tseng, P. A modified forward-backward splitting method for maximal monotone mappings. Siam J. Control Optim. 2000, 38, 431–446. [Google Scholar] [CrossRef]
- Suwannaprapa, M.; Petrot, N.; Suantai, S. Weak convergence theorems for split feasibility problems on zeros of the sum of monotone operators and fixed point sets in Hilbert spaces. Fixed Point Theory A 2017, 2017, 17. [Google Scholar] [CrossRef]
- Zhu, J.; Tang, J.; Chang, S. Strong convergence theorems for a class of split feasibility problems and fixed point problem in Hilbert spaces. J. Inequal. Appl. 2018, 2018, 15. [Google Scholar] [CrossRef]
- Xu, H.K. Averaged mappings and the gradient-projection algorithm. J. Optim. Theory Appl. 2011, 150, 360–378. [Google Scholar] [CrossRef]
- Takahashi, W. Introduction to Nonlinear and Convex Analysis; Yokohama Publishers: Yokohama, Japan, 2009; pp. 82–163. [Google Scholar]
- Aoyama, K.; Kimura, Y.; Takahashi, W.; Toyoda, M. On a strongly nonexpansive sequence in Hilbert spaces. J. Nonlinear Convex Anal. 2007, 8, 471–489. [Google Scholar]
- Takahashi, W. Nonlinear Functional Analysis: Fixed Point Theory and Its Applications; Yokohama Publishers: Yokohama, Japan, 2000; pp. 55–92. [Google Scholar]
- Takahashi, W.; Toyoda, M. Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 2003, 118, 417–428. [Google Scholar] [CrossRef]
- Liu, L.S. Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappins in Banach spaces. J. Math. Anal. Appl. 1995, 194, 114–125. [Google Scholar] [CrossRef]
- Maingé, P.E. Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 2007, 325, 469–479. [Google Scholar] [CrossRef]
- Baillon, J.B.; Haddad, G. Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones. Isr. J. Math. 1977, 26, 137–150. [Google Scholar] [CrossRef]
- Cui, H.; Wang, F. Iterative methods for the split common fixed point problem in Hilbert spaces. Fixed Point Theory A 2014, 2014, 8. [Google Scholar] [CrossRef]
- Moudafi, A. A note on the split common fixed-point problem for quasi-nonexpansive operators. Nonlinear Anal. Theor. 2011, 74, 4083–4087. [Google Scholar] [CrossRef]
- Shimizu, T.; Takahashi, W. Strong convergence to common fixed points of families of nonexpansive mappings. J. Math. Anal. Appl. 1997, 211, 71–83. [Google Scholar] [CrossRef]
- Zhao, J.; He, S. Strong convergence of the viscosity approximation process for the split common fixed-point problem of quasi-nonexpansive mappings. J. Appl. Math. 2012, 2012, 12. [Google Scholar] [CrossRef]
Case → | , | , | , | , | , | |||||
---|---|---|---|---|---|---|---|---|---|---|
#Initial Point ↓ | Iters | Sol | Iters | Sol | Iters | Sol | Iters | Sol | Iters | Sol |
206 | 353 | 95 | 1,645 | 566 | ||||||
193 | 297 | 94 | 1164 | 555 | ||||||
207 | 351 | 96 | 1647 | 573 | ||||||
31 | 64 | 9 | 382 | 95 |
Case → | ||||||
---|---|---|---|---|---|---|
#Initial Point ↓ | Iters | Sol | Iters | Sol | Iters | Sol |
98 | 95 | 94 | ||||
95 | 94 | 94 | ||||
99 | 96 | 94 | ||||
9 | 9 | 9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suantai, S.; Petrot, N.; Suwannaprapa, M. Iterative Methods for Finding Solutions of a Class of Split Feasibility Problems over Fixed Point Sets in Hilbert Spaces. Mathematics 2019, 7, 1012. https://doi.org/10.3390/math7111012
Suantai S, Petrot N, Suwannaprapa M. Iterative Methods for Finding Solutions of a Class of Split Feasibility Problems over Fixed Point Sets in Hilbert Spaces. Mathematics. 2019; 7(11):1012. https://doi.org/10.3390/math7111012
Chicago/Turabian StyleSuantai, Suthep, Narin Petrot, and Montira Suwannaprapa. 2019. "Iterative Methods for Finding Solutions of a Class of Split Feasibility Problems over Fixed Point Sets in Hilbert Spaces" Mathematics 7, no. 11: 1012. https://doi.org/10.3390/math7111012
APA StyleSuantai, S., Petrot, N., & Suwannaprapa, M. (2019). Iterative Methods for Finding Solutions of a Class of Split Feasibility Problems over Fixed Point Sets in Hilbert Spaces. Mathematics, 7(11), 1012. https://doi.org/10.3390/math7111012