Orlicz–Pettis Theorem through Summability Methods
Abstract
:1. Introduction
2. Main Results
- and .
- If , then .
- If and , then .
- Additionally, we say that is regular (or admissible) if it contains all finite subsets.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zygmund, A. Trigonometrical Series; Dover Publications: New York, NY, USA, 1955; p. vii+329. [Google Scholar]
- Hardy, G.H.; Littlewood, J.E. Sur la série de Fourier d’une fonction á carré sommable. CR Acad. Sci. Paris 1913, 156, 1307–1309. [Google Scholar]
- Connor, J.S. The statistical and strong p-Cesàro convergence of sequences. Analysis 1988, 8, 47–63. [Google Scholar] [CrossRef]
- Boos, J. Classical and Modern Methods in Summability; Oxford Mathematical Monographs, Oxford University Press: Oxford, UK, 2000; p. xiv+586. [Google Scholar]
- Zeller, K.; Beekmann, W. Theorie der Limitierungsverfahren; Zweite, erweiterte und verbesserte Auflage. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 15; Springer: Berlin, Germany; New York, NY, USA, 1970; p. xii+314. [Google Scholar]
- Mursaleen, M. Applied Summability Methods; SpringerBriefs in Mathematics; Springer: Cham, Switzerland, 2014; p. x+124. [Google Scholar] [CrossRef]
- Kalton, N.J. The Orlicz-Pettis theorem. In Proceedings of the Conference on Integration, Topology, and Geometry in Linear Spaces, Chapel Hill, NC, USA, 17–19 May 1979; Volume 2, pp. 91–100. [Google Scholar]
- Aizpuru, A.; Nicasio-Llach, M.; Rambla-Barreno, F. A remark about the Orlicz-Pettis theorem and the statistical convergence. Acta Math. Sin. (Engl. Ser.) 2010, 26, 305–310. [Google Scholar] [CrossRef]
- Aizpuru, A.; Nicasio-Llach, M.; Sala, A. A remark about the statistical Cesàro summability and the Orlicz-Pettis theorem. Acta Math. Hungar. 2010, 126, 94–98. [Google Scholar] [CrossRef]
- Chen, A.; Li, R. A version of Orlicz-Pettis theorem for quasi-homogeneous operator space. J. Math. Anal. Appl. 2011, 373, 127–133. [Google Scholar] [CrossRef]
- Gu, J.; Liu, Z.S.; Zhou, Y.F.; Xu, X.Y. The Orlicz-Pettis theorem in abstract duality pair. Math. Pract. Theory 2010, 40, 143–145. [Google Scholar]
- Swartz, C. A bilinear Orlicz-Pettis theorem. J. Math. Anal. Appl. 2010, 365, 332–337. [Google Scholar] [CrossRef]
- Swartz, C. A weak Orlicz-Pettis theorem. Bol. Soc. Mat. Mexicana 2013, 19, 85–89. [Google Scholar]
- Swartz, C. The Orlicz-Pettis theorem for multiplier convergent series. In Advanced Courses of Mathematical Analysis V; World Scientific Publishing: Hackensack, NJ, USA, 2016; pp. 295–306. [Google Scholar]
- León-Saavedra, F.; Moreno-Pulido, S.; Sala, A. Orlicz-Pettis type theorems via strong p-Cesàro convergence. Numer. Funct. Anal. Optim. 2019, 40, 798–802. [Google Scholar] [CrossRef]
- Blasco, O.; Drewnowski, L. Extension of Pettis integration: Pettis operators and their integrals. Collect. Math. 2019, 70, 267–281. [Google Scholar] [CrossRef]
- Deringoz, F.; Guliyev, V.S.; Ragusa, M.A. Intrinsic square functions on vanishing generalized Orlicz-Morrey spaces. Set-Valued Var. Anal. 2017, 25, 807–828. [Google Scholar] [CrossRef]
- Altay, B.; Kama, R. On Cesàro summability of vector valued multiplier spaces and operator valued series. Positivity 2018, 22, 575–586. [Google Scholar] [CrossRef]
- Ragusa, M.A.; Shakhmurov, V. Embedding of vector-valued Morrey spaces and separable differential operators. Bull. Math. Sci. 2019, 9, 1950013. [Google Scholar] [CrossRef]
- Diestel, J.; Uhl, J.J., Jr. Vector Measures; American Mathematical Society: Providence, RI, USA, 1977; p. xiii+322. [Google Scholar]
- Aizpuru, A.; Gutiérrez-Dávila, A.; Sala, A. Unconditionally Cauchy series and Cesàro summability. J. Math. Anal. Appl. 2006, 324, 39–48. [Google Scholar] [CrossRef]
- Aizpuru, A.; Pérez-Eslava, C.; Seoane-Sepúlveda, J.B. Matrix summability methods and weakly unconditionally Cauchy series. Rocky Mountain J. Math. 2009, 39, 367–380. [Google Scholar] [CrossRef]
- Aizpuru, A.; Listán-García, M.C.; Rambla-Barreno, F. Density by moduli and statistical convergence. Quaest. Math. 2014, 37, 525–530. [Google Scholar] [CrossRef]
- Das, P.; Ghosal, S.K. Some further results on I-Cauchy sequences and condition (AP). Comput. Math. Appl. 2010, 59, 2597–2600. [Google Scholar] [CrossRef]
- Dems, K. On I-Cauchy sequences. Real Anal. Exchang. 2004, 30, 123–128. [Google Scholar] [CrossRef]
- Filipów, R.; Tryba, J. Ideal convergence versus matrix summability. Studia Math. 2019, 245, 101–127. [Google Scholar] [CrossRef]
- Nabiev, A.; Pehlivan, S.; Gürdal, M. On I-Cauchy sequences. Taiwanese J. Math. 2007, 11, 569–576. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
León-Saavedra, F.; Romero de la Rosa, M.d.P.; Sala, A. Orlicz–Pettis Theorem through Summability Methods. Mathematics 2019, 7, 895. https://doi.org/10.3390/math7100895
León-Saavedra F, Romero de la Rosa MdP, Sala A. Orlicz–Pettis Theorem through Summability Methods. Mathematics. 2019; 7(10):895. https://doi.org/10.3390/math7100895
Chicago/Turabian StyleLeón-Saavedra, Fernando, María del Pilar Romero de la Rosa, and Antonio Sala. 2019. "Orlicz–Pettis Theorem through Summability Methods" Mathematics 7, no. 10: 895. https://doi.org/10.3390/math7100895
APA StyleLeón-Saavedra, F., Romero de la Rosa, M. d. P., & Sala, A. (2019). Orlicz–Pettis Theorem through Summability Methods. Mathematics, 7(10), 895. https://doi.org/10.3390/math7100895