Comparison of the Orthogonal Polynomial Solutions for Fractional Integral Equations
Abstract
:1. Introduction
2. Description of the Method
3. Numerical Examples
- (a)
- (Equally spaced points)
- (b)
- (extreme points of )
- (c)
- (the zeros of )
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dos Santos, M.A.F. Non-Gaussian Distributions to Random Walk in the Context of Memory Kernels. Fractal Fract. 2018, 2, 20. [Google Scholar] [CrossRef]
- Sandev, T. Generalized Langevin Equation and the Prabhakar Derivative. Mathematics 2017, 5, 66. [Google Scholar] [CrossRef]
- Fernandez, A. An Elliptic Regularity Theorem for Fractional Partial Differential Operators. Comput. Appl. Math. 2018, 37, 5542–5553. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, 1st ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2006; p. 105. ISBN 978-0-444-51832-3. [Google Scholar]
- De Oliveira, E.C.; Tenreiro Machado, J.A. A Review of Definitions for Fractional Derivatives and Integral. Math. Probl. Eng. 2014, 2014, 238459. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations, 1st ed.; Wiley-Interscience: New York, NY, USA, 1993; p. 45. ISBN 0-471-58884-9. [Google Scholar]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Compositions of Hadamard-type Fractional Integration Operators and the Semigroup Property. J. Math. Anal. Appl. 2002, 269, 387–400. [Google Scholar] [CrossRef]
- Katugampola, U.N. New Approach to a Generalized Fractional Integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef]
- Brunner, H.; Crisci, M.R.; Russo, E.; Vecchio, A. A Family of Methods for Abel Integral Equations of the Second Kind. J. Comput. Appl. Math. 1991, 34, 211–219. [Google Scholar] [CrossRef]
- Vanani, S.K.; Soleymani, F. Tau Approximate Solution of Weakly Singular Volterra Integral Equations. Math. Comput. Modell. 2013, 57, 494–502. [Google Scholar] [CrossRef]
- Abdelkawy, M.A.; Ezz-Eldien, S.S.; Amin, A.Z.M. A Jacobi Spectral Collocation Scheme for Solving Abel’s Integral Equations. Prog. Fract. Differ. Appl. 2015, 1, 187–200. [Google Scholar] [CrossRef]
- Pandey, R.K.; Sharma, S.; Kumar, K. Collocation Method for Generalized Abel’s Integral Equations. J. Comput. Appl. Math. 2016, 302, 118–128. [Google Scholar] [CrossRef]
- Fathizadeh, E.; Ezzati, R.; Maleknejad, K. Hybrid Rational Haar Wavelet and Block Pulse Functions Method for Solving Population Growth Model and Abel Integral Equations. Math. Probl. Eng. 2017, 2017, 2465158. [Google Scholar] [CrossRef]
- Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; ISBN 978-94-015-8289-6. [Google Scholar]
- Wazwaz, A.M. A First Course in Integral Equations; World Scientific: Singapore, 1997; pp. 68–77. [Google Scholar]
- Bougoffa, L.; Rach, R.C.; Mennouni, A. A Convenient Technique for Solving Linear and Nonlinear Abel Integral Equations by the Adomian Decomposition Method. Appl. Math. Comput. 2011, 218, 1785–1793. [Google Scholar] [CrossRef]
- Pandey, R.K.; Singh, O.P.; Singh, V.K. Efficient Algorithms to Solve Singular Integral Equations of Abel Type. Comput. Math. Appl. 2009, 57, 664–676. [Google Scholar] [CrossRef]
- Liu, Y.P.; Tao, L. High Accuracy Combination Algorithm and A Posteriori Error Estimation for Solving The First Kind Abel Integral Equations. Appl. Math. Comput. 2006, 178, 441–451. [Google Scholar] [CrossRef]
- Liu, Y.P.; Tao, L. Mechanical Quadrature Methods and Their Extrapolation for Solving First Kind Abel Integral Equations. J. Comput. Appl. Math. 2007, 201, 300–313. [Google Scholar] [CrossRef]
- Jahanshahi, S.; Babolian, E.; Torres, D.F.M.; Vahidi, A. Solving Abel Integral Equations of First Kind via Fractional Calculus. J. King Saud Univ. Sci. 2015, 27, 161–167. [Google Scholar] [CrossRef]
- Singh, K.K.; Pandey, R.K.; Mandal, B.N.; Dubey, N. An Analytical Method for Solving Singular Integral Equations of Abel Type. Procedia Eng. 2012, 38, 2726–2738. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Gondal, M.A. A Reliable Treatment of Abel’s Second Kind Singular Integral Equations. Appl. Math. Lett. 2012, 25, 1666–1670. [Google Scholar] [CrossRef]
- Yang, C. An Efficient Numerical Method for Solving Abel Integral Equation. Appl. Math. Comput. 2014, 227, 656–661. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Kumar, D.; Singh, J.; Singh, A. Analytical Solution of Abel Integral Equation Arising in Astrophysics via Laplace Transform. J. Egypt. Math. Soc. 2015, 23, 102–107. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Zarei, E.; Kelishami, H.B. Homotopy Analysis Transform Method for Solving Abel’s Integral Equations of the First Kind. Ain Shams Eng. J. 2016, 7, 483–495. [Google Scholar] [CrossRef]
- Li, C.; Clarkson, K. Babenko’s Approach to Abel’s Integral Equations. Mathematics 2018, 6, 32. [Google Scholar] [CrossRef]
- Piessens, R. Computing Integral Transforms and Solving Integral Equations Using Chebyshev Polynomial Approximations. J. Comput. Appl. Math. 2000, 121, 113–124. [Google Scholar] [CrossRef]
- Avazzadeh, Z.; Shafiee, B.; Loghmani, G.B. Fractional Calculus for Solving Abel’s Integral Equations Using Chebyshev Polynomials. Appl. Math. Sci. 2011, 5, 2207–2216. [Google Scholar]
- Sohrabi, S. Comparison Chebyshev Wavelets Method with BPFs Method for Solving Abel’s Integral Equation. Ain Shams Eng. J. 2011, 2, 249–254. [Google Scholar] [CrossRef]
- Yousefi, S.A. Numerical Solution of Abel’s Integral Equation by Using Legendre Wavelets. Appl. Math. Comput. 2006, 175, 574–580. [Google Scholar] [CrossRef]
- Saadatmandi, A.; Dehghan, M. A Collocation Method for Solving Abel’s Integral Equations of First and Second Kinds. Z. Naturforsch. A 2008, 63, 752–756. [Google Scholar] [CrossRef]
- Huang, L.; Huang, Y.; Li, X.F. Approximate Solution of Abel Integral Equation. Comput. Math. Appl. 2008, 56, 1748–1757. [Google Scholar] [CrossRef]
- Yousefi, S.A. B-Polynomial Multiwavelets Approach for the Solution of Abel’s Integral Equation. Int. J. Comput. Math. 2010, 87, 310–316. [Google Scholar] [CrossRef]
- Dixit, S.; Pandey, R.K.; Kumar, S.; Singh, O.P. Solution of the Generalized Abel Integral Equation by Using Almost Bernstein Operational Matrix. Am. J. Comput. Math. 2011, 1, 226–234. [Google Scholar] [CrossRef]
- Shahsavaran, A. Numerical Approach to Solve Second Kind Volterra Integral Equation of Abel Type Using Block-Pulse Functions and Taylor Expansion by Collocation Method. Appl. Math. Sci. 2011, 5, 685–696. [Google Scholar]
- Rahman, M.A.; Islam, M.S.; Alam, M.M. Numerical Solutions of Volterra Integral Equations Using Laguerre Polynomials. J. Sci. Res. 2012, 4, 357–364. [Google Scholar] [CrossRef]
- Cao, Y.; Herdman, T.; Xu, Y. A Hybrid Collocation Method for Volterra Integral Equations with Weakly Singular Kernels. SIAM J. Numer. Anal. 2003, 41, 364–381. [Google Scholar] [CrossRef] [Green Version]
- Baratella, P.; Orsi, A.P. A New Approach to the Numerical Solution of Weakly Singular Volterra Integral Equations. J. Comput. Appl. Math. 2004, 163, 401–418. [Google Scholar] [CrossRef]
- Babolian, E.; Shamloo, A.S. Numerical Solution of Volterra Integral and Integro-Differential Equations of Convolution Type by Using Operational Matrices of Piecewise Constant Orthogonal Functions. J. Comput. Appl. Math. 2008, 214, 495–508. [Google Scholar] [CrossRef]
- Lepik, Ü. Solving Fractional Integral Equations by the Haar Wavelet Method. Appl. Math. Comput. 2009, 214, 468–478. [Google Scholar] [CrossRef]
- Bandrowski, B.; Karczewska, A.; Rozmej, P. Numerical Solutions to Integral Equations Equivalent to Differential Equations with Fractional Time. Int. J. Appl. Math. Comput. Sci. 2010, 20, 261–269. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Mandal, B.N. Use of Bernstein Polynomials in Numerical Solutions of Volterra Integral Equations. Appl. Math. Sci. 2008, 2, 1773–1787. [Google Scholar]
- Maleknejad, K.; Hashemizadeh, E.; Ezzati, R. A New Approach to the Numerical Solution of Volterra Integral Equations by Using Bernstein’s Approximation. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 647–655. [Google Scholar] [CrossRef]
- Atangana, A.; Bildik, N. Existence and Numerical Solution of the Volterra Fractional Integral Equations of the Second Kind. Math. Probl. Eng. 2013, 2013, 981526. [Google Scholar] [CrossRef]
- Kalitvin, V.A. Numerical Solution of Integral Equations with Fractional and Partial Integrals and Variable Integration Limits. J. Math. Sci. 2016, 219, 143–149. [Google Scholar] [CrossRef]
- Eshaghi, J.; Adibi, H.; Kazem, S. Solution of Nonlinear Weakly Singular Volterra Integral Equations Using the Fractional-Order Legendre Functions and Pseudo spectral Method. Math. Meth. Appl. Sci. 2016, 39, 3411–3425. [Google Scholar] [CrossRef]
- Micula, S. An Iterative Numerical Method for Fractional Integral Equations of the Second Kind. J. Comput. Appl. Math. 2018, 339, 124–133. [Google Scholar] [CrossRef]
- Rainville, E.D. Special Functions; The Macmillan Company: New York, NY, USA, 1960. [Google Scholar]
- Lebedev, N.N. Special Functions and Their Applications; Prentice-Hall: Englewood Cliffs, NJ, USA, 1965. [Google Scholar]
- Bell, W.W. Special Functions for Scientists and Engineers; D. Van Nostrand Company Ltd.: London, UK, 1968; pp. 42–200. [Google Scholar]
Orthogonal Polynomials | Maximum Error | Mean absolute Error | ||||
---|---|---|---|---|---|---|
a | b | c | a | b | c | |
Laguerre | 3.47 × 10−14 | 2.17 × 10−14 | 1.45 × 10−14 | 1.22 × 10−14 | 1.17 × 10−14 | 7.65 × 10−15 |
Hermit | 9.56 × 10−16 | 4.77 × 10−15 | 7.37 × 10−16 | 4.12 × 10−16 | 1.40 × 10−15 | 2.40 × 10−16 |
Jacobi (0,1) | 6.18 × 10−15 | 2.79 × 10−15 | 1.94 × 10−15 | 1.95 × 10−15 | 1.59 × 10−15 | 1.17 × 10−15 |
Jacobi (1,1) | 3.95 × 10−15 | 2.12 × 10−15 | 2.12 × 10−15 | 1.50 × 10−15 | 8.08 × 10−16 | 7.23 × 10−16 |
Legendre | 4.78 × 10−15 | 2.11 × 10−15 | 1.99 × 10−15 | 1.63 × 10−15 | 1.03 × 10−15 | 5.26 × 10−16 |
Chebyshev (first kind) | 6.84 × 10−15 | 3.13 × 10−15 | 3.09 × 10−15 | 2.09 × 10−15 | 1.17 × 10−15 | 7.86 × 10−16 |
Chebyshev (second kind) | 1.48 × 10−15 | 1.47 × 10−15 | 3.45 × 10−15 | 6.83 × 10−16 | 6.67 × 10−16 | 8.61 × 10−16 |
Orthogonal Polynomials | |||||||||
---|---|---|---|---|---|---|---|---|---|
Laguerre | 1.4 × 10−2 | 1.2 × 10−3 | 1.5 × 10−4 | 1.3 × 10−5 | 1.6 × 10−6 | 5.7 × 10−5 | 5.7 × 10−8 | 9.9 × 10−6 | 6.5 × 10−7 |
Hermit | 1.4 × 10−2 | 1.2 × 10−3 | 1.8 × 10−4 | 1.2 × 10−5 | 1.2 × 10−6 | 6.7 × 10−8 | 2.4 × 10−6 | 4.5 × 10−9 | 5.2 × 10−9 |
Jacobi (0,1) | 1.4 × 10−2 | 1.2 × 10−3 | 1.8 × 10−4 | 1 × 10−5 | 2.6 × 10−6 | 6.5 × 10−8 | 1.3 × 10−5 | 7.7 × 10−8 | 5 × 10−4 |
Jacobi (1,1) | 1.4 × 10−2 | 1.2 × 10−3 | 1.8 × 10−4 | 1.3 × 10−5 | 1.2 × 10−6 | 3.8 × 10−6 | 2.2 × 10−9 | 1.2 × 10−5 | 3.5 × 10−6 |
Legendre | 1.4 × 10−2 | 1.2 × 10−3 | 1.8 × 10−4 | 1.3 × 10−5 | 1.2 × 10−6 | 3.9 × 10−6 | 3.9 × 10−7 | 1 × 10−5 | 4.3 × 10−9 |
1. Chebyshev | 1.4 × 10−2 | 1.2 × 10−3 | 1.8 × 10−4 | 9.3 × 10−6 | 1.2 × 10−6 | 3.9 × 10−6 | 1.3 × 10−6 | 1.3 × 10−5 | 4.2 × 10−4 |
2. Chebyshev | 1.4 × 10−2 | 1.2 × 10−3 | 1.8 × 10−4 | 1.3 × 10−5 | 1.2 × 10−6 | 4 × 10−6 | 1.4 × 10−7 | 1.3 × 10−5 | 4.5 × 10−9 |
Orthogonal Polynomials | |||||||||
---|---|---|---|---|---|---|---|---|---|
Laguerre | 1.2 × 10−2 | 1.4 × 10−3 | 1 × 10−4 | 1.8 × 10−5 | 2.8 × 10−5 | 2.2 × 10−8 | 3.9 × 10−6 | 8.8 × 10−7 | 4.8 × 10−9 |
Hermit | 1.2 × 10−2 | 1.4 × 10−3 | 1 × 10−4 | 8.2 × 10−6 | 4.3 × 10−7 | 2.4 × 10−8 | 6.1 × 10−9 | 7.4 × 10−9 | 5.8 × 10−9 |
Jacobi (0,1) | 1.2 × 10−2 | 1.4 × 10−3 | 1 × 10−4 | 8.2 × 10−6 | 4.3 × 10−7 | 2.5 × 10−8 | 4.3 × 10−9 | 4.7 × 10−6 | 3.4 × 10−7 |
Jacobi (1,1) | 1.2 × 10−2 | 1.4 × 10−3 | 1 × 10−4 | 8 × 10−6 | 4.3 × 10−7 | 4.3 × 10−7 | 1.2 × 10−8 | 5 × 10−7 | 1.9 × 10−8 |
Legendre | 1.2 × 10−2 | 1.4 × 10−3 | 1 × 10−4 | 8 × 10−6 | 4.3 × 10−7 | 4.5 × 10−7 | 4.9 × 10−9 | 6.1 × 10−7 | 6.6 × 10−9 |
1. Chebyshev | 1.2 × 10−2 | 1.4 × 10−3 | 1 × 10−4 | 8 × 10−6 | 4.3 × 10−7 | 4 × 10−7 | 4.6 × 10−9 | 5.2 × 10−7 | 7.7 × 10−6 |
2. Chebyshev | 1.2 × 10−2 | 1.4 × 10−3 | 1 × 10−4 | 8 × 10−6 | 4.3 × 10−7 | 4.5 × 10−7 | 6 × 10−8 | 5.2 × 10−7 | 6.8 × 10−9 |
Orthogonal Polynomials | |||||||||
---|---|---|---|---|---|---|---|---|---|
Laguerre | 2.6 × 10−2 | 3.2 × 10−3 | 3.3 × 10−4 | 2.9 × 10−5 | 1.6 × 10−6 | 1.8 × 10−7 | 1.5 × 10−8 | 1.6 × 10−7 | 2.1 × 10−6 |
Hermit | 2.6 × 10−2 | 3.2 × 10−3 | 3.3 × 10−4 | 2.4 × 10−5 | 1.6 × 10−6 | 3.5 × 10−7 | 5.4 × 10−9 | 2.6 × 10−9 | 3.6 × 10−9 |
Jacobi (0,1) | 2.6 × 10−2 | 3.2 × 10−3 | 3.3 × 10−4 | 2.4 × 10−5 | 1.6 × 10−6 | 1.1 × 10−7 | 2.6 × 10−6 | 3 × 10−7 | 1.6 × 10−5 |
Jacobi (1,1) | 2.6 × 10−2 | 3.2 × 10−3 | 3.3 × 10−4 | 2.4 × 10−5 | 9.8 × 10−7 | 8.4 × 10−8 | 6.8 × 10−7 | 2.8 × 10−7 | 8.3 × 10−7 |
Legendre | 2.6 × 10−2 | 3.2 × 10−3 | 3.3 × 10−4 | 2.4 × 10−5 | 9.1 × 10−7 | 8.3 × 10−8 | 6.6 × 10−7 | 2 × 10−9 | 5.1 × 10−6 |
1. Chebyshev | 2.6 × 10−2 | 3.2 × 10−3 | 3.3 × 10−4 | 2.4 × 10−5 | 9.6 × 10−7 | 9.7 × 10−8 | 9.1 × 10−7 | 5.5 × 10−7 | 8.1 × 10−7 |
2. Chebyshev | 2.6 × 10−2 | 3.2 × 10−3 | 3.3 × 10−4 | 2.4 × 10−5 | 9.6 × 10−7 | 8.4 × 10−8 | 7 × 10−7 | 2.1 × 10−8 | 7.8 × 10−7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daşcıoğlu, A.; Salınan, S. Comparison of the Orthogonal Polynomial Solutions for Fractional Integral Equations. Mathematics 2019, 7, 59. https://doi.org/10.3390/math7010059
Daşcıoğlu A, Salınan S. Comparison of the Orthogonal Polynomial Solutions for Fractional Integral Equations. Mathematics. 2019; 7(1):59. https://doi.org/10.3390/math7010059
Chicago/Turabian StyleDaşcıoğlu, Ayşegül, and Serpil Salınan. 2019. "Comparison of the Orthogonal Polynomial Solutions for Fractional Integral Equations" Mathematics 7, no. 1: 59. https://doi.org/10.3390/math7010059
APA StyleDaşcıoğlu, A., & Salınan, S. (2019). Comparison of the Orthogonal Polynomial Solutions for Fractional Integral Equations. Mathematics, 7(1), 59. https://doi.org/10.3390/math7010059