ω-Interpolative Ćirić-Reich-Rus-Type Contractions
Abstract
:1. Introduction and Preliminaries
- If is a sequence in X such that for each n and as , then there exists from such that for each k.
2. Main Results
- If is a sequence in X such that for each n and as , then there exists a subsequence of such that for each k.
- (i)
- T is nondecreasing with respect to ⪯;
- (ii)
- there exists such that ;
- (iii)
- either T is continuous on or holds.
- (i)
- T is nondecreasing with respect to ⪯;
- (ii)
- there exists such that ;
- (iii)
- either T is continuous on or holds.
Author Contributions
Funding
Conflicts of Interest
References
- Karapinar, E. Revisiting the Kannan Type Contractions via Interpolation. Adv. Theory Nonlinear Anal. Appl. 2018, 2, 85–87. [Google Scholar] [CrossRef]
- Karapinar, E.; Agarwal, R.P.; Aydi, H. Interpolative Reich-Rus-Ćirić type contractions on partial metric spaces. Mathematics 2018, 6, 256. [Google Scholar] [CrossRef]
- Karapinar, E.; Alqahtani, O.; Aydi, H. On interpolative Hardy-Rogers type contractions. Symmetry 2018, 11, 8. [Google Scholar] [CrossRef]
- Ćirić, L.B. A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 1974, 45, 267–273. [Google Scholar] [CrossRef]
- Ćirić, L.B. On contraction type mappings. Math. Balkanica 1971, 1, 52–57. [Google Scholar]
- Ćirić, L.B. Generalized contractions and fixed-point theorems. Publ. Inst. Math. (Beograd) 1971, 12, 19–26. [Google Scholar]
- Reich, S. Some remarks concerning contraction mappings. Can. Math. Bull. 1971, 14, 121–124. [Google Scholar] [CrossRef]
- Reich, S. Fixed point of contractive functions. Boll. Un. Mat. Ital. 1972, 4, 26–42. [Google Scholar]
- Reich, S. Kannan’s fixed point theorem. Boll. Un. Mat. Ital. 1971, 4, 1–11. [Google Scholar]
- Rus, I.A. Generalized Contractions and Applications; Cluj University Press: Clui-Napoca, Romania, 2001. [Google Scholar]
- Rus, I.A. Principles and Applications of the Fixed Point Theory; Editura Dacia: Clui-Napoca, Romania, 1979. (In Romanian) [Google Scholar]
- Agarwal, R.P.; Karapinar, E.; O’Regan, D.; Roldán López de Hierro, A.F. Fixed Point Theory in Metric Type Spaces; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef]
- Popescu, O. Some new fixed point theorems for α-Geraghty contractive type maps in metric spaces. Fixed Point Theory Appl. 2014, 2014, 190. [Google Scholar] [CrossRef]
- Afshari, H.; Kalantari, S.; Aydi, H. Fixed point results for generalized α-ψ-Suzuki-contractions in quasi-b-metric-like spaces. Asian-Eur. J. Math. 2018, 11, 1850012. [Google Scholar] [CrossRef]
- Alharbi, N.; Aydi, H.; Felhi, A.; Ozel, C.; Sahmim, S. α-contractive mappings on rectangular b-metric spaces and an application to integral equations. J. Math. Anal. 2018, 9, 47–60. [Google Scholar]
- Ali, M.U.; Kamran, T.; Karapinar, E. On (α,ψ,η)-contractive multivalued mappings. Fixed Point Theory Appl. 2014, 2014, 7. [Google Scholar] [CrossRef]
- Aydi, H.; Jellali, M.; Karapinar, E. Common fixed points for generalized α-implicit contractions in partial metric spaces: Consequences and application. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A Matemáticas 2015, 109, 367–384. [Google Scholar] [CrossRef]
- Aydi, H.; Karapinar, E.; Samet, B. Fixed points for generalized (α,ψ)-contractions on generalized metric spaces. J. Inequal. Appl. 2014, 2014, 229. [Google Scholar] [CrossRef]
- Chen, C.M.; Abkar, A.; Ghods, S.; Karapinar, E. Fixed point theory for the α-admissible Meir-Keeler type set contractions having KKM* property on almost convex sets. Appl. Math. Inf. Sci. 2017, 11, 171–176. [Google Scholar] [CrossRef]
- Felhi, A.; Aydi, H.; Zhang, D. Fixed points for α-admissible contractive mappings via simulation functions. J. Nonlinear Sci. Appl. 2016, 9, 5544–5560. [Google Scholar] [CrossRef]
- Felhi, A.; Aydi, H. New fixed point results for multi-valued maps via manageable functions and an application on a boundary value problem. U.P.B. Sci. Bull. Ser. A 2018, 80, 81–92. [Google Scholar]
- Karapinar, E.; Samet, B. Generalized α-ψ-contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012, 2012, 793486. [Google Scholar] [CrossRef]
- Karapinar, E. Discussion on (α,ψ)-contractions on generalized metric spaces. Abstr. Appl. Anal. 2014, 2014, 962784. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aydi, H.; Karapinar, E.; Roldán López de Hierro, A.F. ω-Interpolative Ćirić-Reich-Rus-Type Contractions. Mathematics 2019, 7, 57. https://doi.org/10.3390/math7010057
Aydi H, Karapinar E, Roldán López de Hierro AF. ω-Interpolative Ćirić-Reich-Rus-Type Contractions. Mathematics. 2019; 7(1):57. https://doi.org/10.3390/math7010057
Chicago/Turabian StyleAydi, Hassen, Erdal Karapinar, and Antonio Francisco Roldán López de Hierro. 2019. "ω-Interpolative Ćirić-Reich-Rus-Type Contractions" Mathematics 7, no. 1: 57. https://doi.org/10.3390/math7010057
APA StyleAydi, H., Karapinar, E., & Roldán López de Hierro, A. F. (2019). ω-Interpolative Ćirić-Reich-Rus-Type Contractions. Mathematics, 7(1), 57. https://doi.org/10.3390/math7010057