Shannon Type Inequalities for Kapur’s Entropy
Abstract
:1. Introduction and Main Results
- 1.
- If and with , then
- 2.
- If and with , or if and , then
2. Definitions and Lemmas
- 1.
- A tuple x is said to be majorized by y (in symbols ) if for and , where and are rearrangements of x and y in a descending order.
- 2.
- A set is called convex if for each and .
- 3.
- Let . A function is said to be Schur-convex on Ω if on Ω implies . A function φ is said to be Schur-concave on Ω if and only if is Schur-convex.
- 1.
- The set Ω is said to be geometrically convex if for each and .
- 2.
- The function φ is said to be Schur-geometrically convex on Ω if the majorization implies for each .
- 1.
- The set Ω is said to be harmonically convex if for each and .
- 2.
- The function φ is said to be Schur-harmonically convex on Ω if the majorization implies for each .
3. Shannon Type Inequalities for Kapur’s Entropy
- when , the function is increasing on and decreasing on ;
- when , the function is increasing on .
- if , the function is Schur-convex on ;
- if , the function is Schur-concave on ;
- if , the function is Schur-concave on .
- if and with , then
- if and with , then
- if and , the inequality (5) still holds.
4. Remarks
- 1.
- If , we have
- 2.
- If , we have
- 1.
- if , then
- 2.
- if , then
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marshall, A.W.; Olkin, I.; Arnold, B.C. Inequalities: Theory of Majorization and Its Applications, 2nd ed.; Springer: New York, NY, USA; Dordrecht, The Netherlands; Heidelberg, Germany; London, UK, 2011. [Google Scholar]
- Kapur, J.N. On some properties of generalised entropies. Indian J. Math. 1967, 9, 427–442. [Google Scholar]
- Stolarsky, K.B. A stronger logarithmic inequality suggested by the entropy inequality. SIAM J. Math. Anal. 1980, 11, 242–247. [Google Scholar] [CrossRef]
- Clausing, A. Type t entropy and majorization. SIAM J. Math. Anal. 1983, 14, 203–208. [Google Scholar] [CrossRef]
- Bebiano, N.; Lemos, R.; da Providência, J. Inequalities for quantum relative entropy. Linear Algebra Its Appl. 2005, 401, 159–172. [Google Scholar] [CrossRef]
- Blachman, N.M. The convolution inequality for entropy powers. IEEE Trans. Inf. Theory 1965, IT-11, 267–271. [Google Scholar] [CrossRef]
- Bobkov, S.G.; Chistyakov, G.P. Entropy power inequality for the Rényi entropy. IEEE Trans. Inf. Theory 2015, 61, 708–714. [Google Scholar] [CrossRef]
- Capocelli, R.M.; Taneja, I.J. On some inequalities and generalized entropies: A unified approach. Cybern. Syst. 1985, 16, 341–376. [Google Scholar] [CrossRef]
- Cohen, J.E.; Derriennic, Y.; Zbăganu, G. Majorization, monotonicity of relative entropy, and stochastic matrices, Doeblin and Modern Probability (Blaubeuren, 1991). Contemp. Math. 1993, 149, 251–259. [Google Scholar] [CrossRef]
- Furuichi, S.; Minculete, N.; Mitroi, F.-C. Some inequalities on generalized entropies. J. Inequal. Appl. 2012, 2012, 226. [Google Scholar] [CrossRef] [Green Version]
- Kapur, J.N. Some properties of entropy of order α and type β. Proc. Indian Acad. Sci. Sect. A 1969, 69, 201–211. [Google Scholar] [CrossRef]
- Mokshay, M.; Andrew, B. Generalized entropy power inequalities and monotonicity properties of information. IEEE Trans. Inf. Theory 2007, 53, 2317–2329. [Google Scholar] [CrossRef]
- Qi, F.; Lim, D.; Guo, B.-N. Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2019, in press. [Google Scholar] [CrossRef]
- Yao, Y.; Yao, J.-C.; Liou, Y.-C.; Postolache, M. Iterative algorithms for split common fixed points of demicontractive operators without priori knowledge of operator norms. Carpathian J. Math. 2018, 34, 459–466. [Google Scholar]
- Wang, B.Y. Foundations of Majorization Inequalities; Beijing Normal Univ. Press: Beijing, China, 1990. (In Chinese) [Google Scholar]
- Chu, Y.-M.; Zhang, X.-M.; Wang, G.-D. The Schur geometrical convexity of the extended mean values. J. Convex Anal. 2008, 15, 707–718. [Google Scholar]
- Xia, W.F.; Chu, Y.M. Schur-convexity for a class of symmetric functions and its applications. J. Inequal. Appl. 2009, 2009, 493759. [Google Scholar] [CrossRef]
- Yang, Z.-H. Schur power convexity of Gini means. Bull. Korean Math. Soc. 2013, 50, 485–498. [Google Scholar] [CrossRef]
- Yang, Z.-H. Schur power convexity of Stolarsky means. Publ. Math. Debr. 2012, 80, 43–66. [Google Scholar] [CrossRef]
- Yang, Z.-H. Schur power convexity of the Daróczy means. Math. Inequal. Appl. 2013, 16, 751–762. [Google Scholar] [CrossRef]
- Niculescu, C.P.; Persson, L.-E. Convex Functions and Their Applications: A Contemporary Approach, 2nd ed.; CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Qi, F. A note on Schur-convexity of extended mean values. Rocky Mt. J. Math. 2005, 35, 1787–1793. [Google Scholar] [CrossRef]
- Qi, F.; Niu, D.-W.; Guo, B.-N. Some identities for a sequence of unnamed polynomials connected with the Bell polynomials. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2019, in press. [Google Scholar] [CrossRef]
- Qi, F.; Sándor, J.; Dragomir, S.S.; Sofo, A. Notes on the Schur-convexity of the extended mean values. Taiwan. J. Math. 2005, 9, 411–420. [Google Scholar] [CrossRef]
- Qi, F.; Shi, X.-T.; Mahmoud, M.; Liu, F.-F. Schur-convexity of the Catalan–Qi function related to the Catalan numbers. Tbil. Math. J. 2016, 9, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Rovenţa, I. Schur convexity of a class of symmetric functions. Ann. Univ. Craiova Ser. Mat. Inform. 2010, 37, 12–18. [Google Scholar]
- Shi, H.-N.; Jiang, Y.-M.; Jiang, W.-D. Schur-convexity and Schur-geometrically concavity of Gini mean. Comput. Math. Appl. 2009, 57, 266–274. [Google Scholar] [CrossRef]
- Shi, H.-N.; Wu, S.-H.; Qi, F. An alternative note on the Schur-convexity of the extended mean values. Math. Inequal. Appl. 2006, 9, 219–224. [Google Scholar] [CrossRef]
- Shi, H.-N.; Zhang, J. Compositions involving Schur harmonically convex functions. J. Comput. Anal. Appl. 2017, 22, 907–922. [Google Scholar]
- Sun, J.; Sun, Z.-L.; Xi, B.-Y.; Qi, F. Schur-geometric and Schur-harmonic convexity of an integral mean for convex functions. Turk. J. Anal. Number Theory 2015, 3, 87–89. [Google Scholar] [CrossRef]
- Wu, Y.; Qi, F. Schur-harmonic convexity for differences of some means. Analysis 2012, 32, 263–270. [Google Scholar] [CrossRef]
- Wu, Y.; Qi, F.; Shi, H.-N. Schur-harmonic convexity for differences of some special means in two variables. J. Math. Inequal. 2014, 8, 321–330. [Google Scholar] [CrossRef]
- Yao, Y.; Qin, X.; Yao, J.-C. Projection methods for firmly type nonexpansive operators. J. Nonlinear Convex Anal. 2018, 19, 407–415. [Google Scholar]
- Zhang, X.-M. Geometrically Convex Functions; An’hui University Press: Hefei, China, 2004. (In Chinese) [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, B.-Y.; Gao, D.-D.; Zhang, T.; Guo, B.-N.; Qi, F. Shannon Type Inequalities for Kapur’s Entropy. Mathematics 2019, 7, 22. https://doi.org/10.3390/math7010022
Xi B-Y, Gao D-D, Zhang T, Guo B-N, Qi F. Shannon Type Inequalities for Kapur’s Entropy. Mathematics. 2019; 7(1):22. https://doi.org/10.3390/math7010022
Chicago/Turabian StyleXi, Bo-Yan, Dan-Dan Gao, Tao Zhang, Bai-Ni Guo, and Feng Qi. 2019. "Shannon Type Inequalities for Kapur’s Entropy" Mathematics 7, no. 1: 22. https://doi.org/10.3390/math7010022
APA StyleXi, B.-Y., Gao, D.-D., Zhang, T., Guo, B.-N., & Qi, F. (2019). Shannon Type Inequalities for Kapur’s Entropy. Mathematics, 7(1), 22. https://doi.org/10.3390/math7010022