Existence Results of a Coupled System of Caputo Fractional Hahn Difference Equations with Nonlocal Fractional Hahn Integral Boundary Value Conditions
Abstract
:1. Introduction
2. Preliminaries
- (1)
- (2)
- (3)
- (4)
3. Existence and Uniqueness Result
- There exist constants such that, for each ,
- There exist constants such that, for each
- for each .
4. Existence of at Least One Solution
5. Example
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Jagerman, D.L. Difference Equations with Applications to Queues; Dekker: New York, NY, USA, 2000. [Google Scholar]
- Aldowah, K.A.; Malinowska, A.B.; Torres, D.F.M. The power quantum calculus and variational problems. Dyn. Contin. Discret. Impuls Syst. Ser. B Appl. Algorithms 2012, 19, 93–116. [Google Scholar]
- Da Cruz, A.M.C.B.; Martins, N.; Torres, D.F.M. Symmetric differentiation on time scales. Appl. Math. Lett. 2013, 26, 264–269. [Google Scholar] [CrossRef]
- Cruz, B.; Artur, M.C. Symmetric Quantum Calculus. Ph.D. Thesis, Aveiro University, Aveiro, Portugal, 2002. [Google Scholar]
- Wu, G.C.; Baleanu, D. New applications of the variational iteration method from differential equations to q-fractional difference equations. Adv. Differ. Equ. 2013, 2013, 21. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 282. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Nodarse, R. On characterization of classical polynomials. J. Comput. Appl. Math. 2006, 196, 320–337. [Google Scholar] [CrossRef]
- Yang, B.; Pan, E.; Tewary, V.K. Three dimensional Green’s functions of steady state motion in anisotropic half spaces and biomaterials. Eng. Anal. Bound. Elem. 2004, 28, 1069–1082. [Google Scholar] [CrossRef]
- Sutradhar, A.; Paulino, G.; Gray, L.J. Symmetric Galerkin Boundary Element Method; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Beer, G.; Smith, I.; Duenser, C. The Boundary Element Method with Programming: For Engineers and Scientists; Springer: New York, NY, USA, 2010. [Google Scholar]
- Sherbakov, S.S.; Zhuravkov, M.A. Interaction of Several Bodies as Applied to Solving Tribo Fatigue Problems. Acta Mech. 2013, 224, 1541–1553. [Google Scholar] [CrossRef]
- Zhuravkov, M.A.; Sherbakov, S.S.; Krupoderov, A.V. Modeling of volumetric damage of multielement clamp knife base tribo fatigue system. Z. Angew. Math. Mech. 2017, 97, 60–69. [Google Scholar] [CrossRef]
- Hahn, W. Über Orthogonalpolynome, die q-Differenzenlgleichungen genügen. Math. Nachr. 1949, 2, 4–34. [Google Scholar] [CrossRef]
- Costas-Santos, R.S.; Marcellán, F. Second structure Relation for q-semiclassical polynomials of the Hahn Tableau. J. Math. Anal. Appl. 2007, 329, 206–228. [Google Scholar] [CrossRef]
- Kwon, K.H.; Lee, D.W.; Park, S.B.; Yoo, B.H. Hahn class orthogonal polynomials. Kyungpook Math. J. 1998, 38, 259–281. [Google Scholar]
- Foupouagnigni, M. Laguerre-Hahn Orthogonal Polynomials with Respect to the Hahn Operator: Fourth-Order Difference Equation for the Rth Associated and the Laguerre-Freud Equations Recurrence Coefficients. Ph.D. Thesis, Université Nationale du Bénin, Bénin, Germany, 1998. [Google Scholar]
- Aldwoah, K.A. Generalized Time Scales and Associated Difference Equations. Ph.D. Thesis, Cairo University, Giza, Egypt, 2009. [Google Scholar]
- Annaby, M.H.; Hamza, A.E.; Aldwoah, K.A. Hahn difference operator and associated Jackson–Nörlund integrals. J. Optim. Theory Appl. 2012, 154, 133–153. [Google Scholar] [CrossRef]
- Jackson, F.H. Basic integration. Q. J. Math. 1951, 2, 1–16. [Google Scholar] [CrossRef]
- Malinowska, B.A.; Torres, D.F.M. The Hahn quantum variational calculus. J. Optim. Theory Appl. 2010, 147, 419–442. [Google Scholar] [CrossRef]
- Malinowska, A.B.; Torres, D.F.M. Quantum Variational Calculus. Spinger Briefs in Electrical and Computer Engineering-Control, Automation and Robotics; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Hamza, A.E.; Ahmed, S.M. Theory of linear Hahn difference equations. J. Adv. Math. 2013, 4, 441–461. [Google Scholar]
- Hamza, A.E.; Ahmed, S.M. Existence and uniqueness of solutions of Hahn difference equations. Adv. Differ. Equ. 2013, 2013, 316. [Google Scholar] [CrossRef] [Green Version]
- Malinowska, A.B.; Martins, N. Generalized transversality conditions for the Hahn quantum variational calculus. Optimization 2013, 62, 323–344. [Google Scholar] [CrossRef] [Green Version]
- Sitthiwirattham, T. On a nonlocal boundary value problem for nonlinear second-order Hahn difference equation with two different q, ω-derivatives. Adv. Differ. Equ. 2016, 2016, 116. [Google Scholar] [CrossRef]
- Sriphanomwan, U.; Tariboon, J.; Patanarapeelert, N.; Ntouyas, S.K.; Sitthiwirattham, T. Nonlocal boundary value problems for second-order nonlinear Hahn integro-difference equations with integral boundary conditions. Adv. Differ. Equ. 2017, 2017, 170. [Google Scholar] [CrossRef]
- Čermák, J.; Nechvátal, L. On (q, h)-analogue of fractional calculus. J. Nonlinear Math. Phys. 2010, 17, 51–68. [Google Scholar]
- Čermák, J.; Kisela, T.; Nechvátal, L. Discrete Mittag-Leffler functions in linear fractional difference equations. Abstr. Appl. Anal. 2011, 2011, 565067. [Google Scholar]
- Rahmat, M.R.S. The (q, h)-Laplace transform on discrete time scales. Comput. Math. Appl. 2011, 62, 272–281. [Google Scholar] [CrossRef]
- Rahmat, M.R.S. On some (q, h)-analogues of integral inequalities on discrete time scales. Comput. Math. Appl. 2011, 62, 1790–1797. [Google Scholar] [CrossRef]
- Du, F.; Jai, B.; Erbe, L.; Peterson, A. Monotonicity and convexity for nabla fractional (q, h)-difference. J. Differ. Equ. Appl. 2016, 22, 1224–1243. [Google Scholar] [CrossRef]
- Brikshavana, T.; Sitthiwirattham, T. On fractional Hahn calculus with the delta operators. Adv. Differ. Equ. 2017, 2017, 354. [Google Scholar] [CrossRef]
- Patanarapeelert, N.; Sitthiwirattham, T. Existence Results for Fractional Hahn Difference and Fractional Hahn Integral Boundary Value Problems. Discrete Dyn. Nat. Soc. 2017, 2017, 7895186. [Google Scholar] [CrossRef]
- Patanarapeelert, N.; Brikshavana, T.; Sitthiwirattham, T. On nonlocal Dirichlet boundary value problem for sequential Caputo fractional Hahn integrodifference equations. Bound. Value Probl. 2018, 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Patanarapeelert, N.; Sitthiwirattham, T. On nonlocal Robin boundary value problems for Riemann–Liouville fractional Hahn integrodifference equation. Bound. Value Probl. 2018, 2018, 46. [Google Scholar] [CrossRef] [Green Version]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumrongpokaphan, T.; Patanarapeelert, N.; Sitthiwirattham, T. Existence Results of a Coupled System of Caputo Fractional Hahn Difference Equations with Nonlocal Fractional Hahn Integral Boundary Value Conditions. Mathematics 2019, 7, 15. https://doi.org/10.3390/math7010015
Dumrongpokaphan T, Patanarapeelert N, Sitthiwirattham T. Existence Results of a Coupled System of Caputo Fractional Hahn Difference Equations with Nonlocal Fractional Hahn Integral Boundary Value Conditions. Mathematics. 2019; 7(1):15. https://doi.org/10.3390/math7010015
Chicago/Turabian StyleDumrongpokaphan, Thongchai, Nichaphat Patanarapeelert, and Thanin Sitthiwirattham. 2019. "Existence Results of a Coupled System of Caputo Fractional Hahn Difference Equations with Nonlocal Fractional Hahn Integral Boundary Value Conditions" Mathematics 7, no. 1: 15. https://doi.org/10.3390/math7010015
APA StyleDumrongpokaphan, T., Patanarapeelert, N., & Sitthiwirattham, T. (2019). Existence Results of a Coupled System of Caputo Fractional Hahn Difference Equations with Nonlocal Fractional Hahn Integral Boundary Value Conditions. Mathematics, 7(1), 15. https://doi.org/10.3390/math7010015