Robust Approximate Optimality Conditions for Uncertain Nonsmooth Optimization with Infinite Number of Constraints
Abstract
:1. Introduction
2. Preliminaries
- (i)
- If and are lower semicontinuous, then,
- (ii)
- If one of and is continuous at some , then,
3. Necessary Approximate Optimality Conditions
- (i)
- (ii)
4. Sufficient Approximate Optimality Conditions
5. Applications
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Goberna, M.; López, M. Linear Semi-Infinite Optimization; Wiley: Chichester, UK, 1998. [Google Scholar]
- Reemtsen, R.; Ruckmann, J.J. Semi-Infinite Programming; Kluwer: Boston, MA, USA, 1998. [Google Scholar]
- Boţ, R.I. Conjugate Duality in Convex Optimization; Springer: Berlin, Germany, 2010. [Google Scholar]
- Fang, D.H.; Li, C.; Ng, K.F. Constraint qualifications for extended Farkas’s lemmas and Lagrangian dualities in convex infinite programming. SIAM J. Optim. 2009, 20, 1311–1332. [Google Scholar] [CrossRef]
- Son, T.Q.; Strodiot, J.J.; Nguyen, V.H. ε-Optimality and ε-Lagrangian duality for a nonconvex programming problem with an infinite number of constraints. J. Optim. Theory Appl. 2009, 141, 389–409. [Google Scholar] [CrossRef]
- Fang, D.H.; Li, C.; Ng, K.F. Constraint qualifications for optimality conditions and total Lagrange dualities in convex infinite programming. Nonlinear Anal. 2010, 73, 1143–1159. [Google Scholar] [CrossRef]
- Kim, D.S.; Son, T.Q. Characterizations of solutions sets of a class of nonconvex semi-infinite programming problems. J. Nonlinear Convex Anal. 2011, 12, 429–440. [Google Scholar]
- Sun, X.K. Regularity conditions characterizing Fenchel-Lagrange duality and Farkas-type results in DC infinite programming. J. Math. Anal. Appl. 2014, 414, 590–611. [Google Scholar] [CrossRef]
- Long, X.J.; Peng, Z.Y.; Wang, X.F. Characterizations of the solution set for nonconvex semi-infinite programming problems. J. Nonlinear Convex Anal. 2016, 17, 251–265. [Google Scholar]
- Long, X.J.; Xiao, Y.B.; Huang, N.J. Optimality conditions of approximate solutions for nonsmooth semi-infinite programming problems. J. Oper. Res. Soc. China 2018, 6, 289–299. [Google Scholar] [CrossRef]
- Kim, D.S.; Son, T.Q. An approach to ϵ-duality theorems for nonconvex semi-infinite multiobjective optimization problems. Taiwan J. Math. 2018, 22, 1261–1287. [Google Scholar] [CrossRef]
- Ben-Tal, A.; Nemirovski, A. Robust optimization-methodology and applications. Math. Program. Ser. B 2002, 92, 453–480. [Google Scholar] [CrossRef]
- Ben-Tal, A.; Ghaoui, L.E.; Nemirovski, A. Robust Optimization; Princeton Series in Applied Mathematics; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Jeyakumar, V.; Li, G.Y. Strong duality in robust convex programming: complete characterizations. SIAM J. Optim. 2010, 20, 3384–3407. [Google Scholar] [CrossRef]
- Bertsimas, D.; Brown, D.B.; Caramanis, C. Theory and applications of robust optimization. SIAM Rev. 2011, 53, 464–501. [Google Scholar] [CrossRef]
- Bo̧t, R.I.; Jeyakumar, V.; Li, G.Y. Robust duality in parametric convex optimization. Set Valued Var. Anal. 2013, 21, 177–189. [Google Scholar] [CrossRef]
- Lee, G.M.; Pham, T.S. On nonsmooth optimality theorems for robust optimization problems. Bull. Korean Math. Soc. 2014, 51, 287–301. [Google Scholar] [CrossRef]
- Jeyakumar, V.; Lee, G.M.; Li, G.Y. Characterizing robust solution sets of convex programs under data uncertainty. J. Optim. Theory Appl. 2015, 164, 407–435. [Google Scholar] [CrossRef]
- Chuong, T.D. Optimality and duality for robust multiobjective optimization problems. Nonlinear Anal. 2016, 134, 127–143. [Google Scholar] [CrossRef]
- Dinh, N.; Goberna, M.A.; López, M.A.; Volle, M. A unified approach to robust convex infinite optimization duality. J. Optim. Theory Appl. 2017, 174, 650–685. [Google Scholar] [CrossRef]
- Sun, X.K.; Long, X.J.; Fu, H.Y.; Li, X.B. Some characterizations of robust optimal solutions for uncertain fractional optimization and applications. J. Ind. Manag. Optim. 2017, 13, 803–824. [Google Scholar] [CrossRef]
- Dinh, N.; Long, D.H. Complete characterizations of robust strong duality for robust vector optimization problems. Vietnam J. Math. 2018, 46, 293–328. [Google Scholar] [CrossRef]
- Fakhar, M.; Mahyarinia, M.R.; Zafarani, J. On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization. Eur. J. Oper. Res. 2018, 265, 39–48. [Google Scholar] [CrossRef]
- Li, X.B.; Wang, S. Characterizations of robust solution set of convex programs with uncertain data. Optim. Lett. 2018, 12, 1387–1402. [Google Scholar] [CrossRef]
- Wei, H.Z.; Chen, C.R.; Li, S.J. Characterizations for optimality conditions of general robust optimization problems. J. Optim. Theory Appl. 2018, 177, 835–856. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, G.M. On ϵ-solutions for convex optimization problems with uncertainty data. Positivity 2012, 16, 509–526. [Google Scholar] [CrossRef]
- Lee, J.H.; Jiao, L. On quasi ϵ-solution for robust convex optimization problems. Optim. Lett. 2017, 11, 1609–1622. [Google Scholar] [CrossRef]
- Sun, X.K.; Li, X.B.; Long, X.J.; Peng, Z.Y. On robust approximate optimal solutions for uncertain convex optimization and applications to multi-objective optimization. Pac. J. Optim. 2017, 13, 621–643. [Google Scholar]
- Lee, J.H.; Lee, G.M. On ϵ-solutions for robust semi-infinite optimization problems. Positivity 2018. [Google Scholar] [CrossRef]
- Rockafellar, R.T. Convex Analysis; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]
- Jeyakumar, V. Asymptotic dual conditions characterizing optimality for convex programs. J. Optim. Theory Appl. 1997, 93, 153–165. [Google Scholar] [CrossRef]
- Loridan, P. Necessary conditions for ε-optimality. Math. Program. 1982, 19, 140–152. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Fu, H.; Zeng, J. Robust Approximate Optimality Conditions for Uncertain Nonsmooth Optimization with Infinite Number of Constraints. Mathematics 2019, 7, 12. https://doi.org/10.3390/math7010012
Sun X, Fu H, Zeng J. Robust Approximate Optimality Conditions for Uncertain Nonsmooth Optimization with Infinite Number of Constraints. Mathematics. 2019; 7(1):12. https://doi.org/10.3390/math7010012
Chicago/Turabian StyleSun, Xiangkai, Hongyong Fu, and Jing Zeng. 2019. "Robust Approximate Optimality Conditions for Uncertain Nonsmooth Optimization with Infinite Number of Constraints" Mathematics 7, no. 1: 12. https://doi.org/10.3390/math7010012
APA StyleSun, X., Fu, H., & Zeng, J. (2019). Robust Approximate Optimality Conditions for Uncertain Nonsmooth Optimization with Infinite Number of Constraints. Mathematics, 7(1), 12. https://doi.org/10.3390/math7010012