A New Proof of a Conjecture on Nonpositive Ricci Curved Compact Kähler–Einstein Surfaces
Abstract
:1. Introduction
2. Existence of Ball-Like Points
3. Generalized Hong-Cang Yang’s Function
4. The Generalization
5. Appendix
Acknowledgments
Conflicts of Interest
References
- Siu, Y.T.; Yang, P. Compact Kähler-Einstein surfaces of nonpositive bisectional curvature. Invent. Math. 1981, 64, 471–487. [Google Scholar] [CrossRef]
- Polombo, A. De Nouvelles Formules De Weitzenböck Pour Des Endomorphismes Harmoniques Applications Géométriques. Ann. Sci. Ec. Norm. 1992, 25, 393–428. [Google Scholar] [CrossRef]
- Hong, Y.; Guan, Z.D.; Yang, H.C. A note on the Kähler-Einstein Manifolds. Acta. Math. Sin. 1988, 31, 595–602. [Google Scholar]
- Polombo, A. Condition d’Einstein et courbure negative en dimension 4. C. R. Acad. Sci. Paris Ser. 1 Math. 1988, 307, 667–670. [Google Scholar]
- Chen, D.; Hong, Y.; Yang, H.C. Kähler-Einstein surface and symmetric space. Sci. China Math. 2011, 54, 2627–2634. [Google Scholar] [CrossRef]
- Guan, D. On Bisectional Negatively Curved Compact Kähler-Einstein Surfaces. Pac. J. Math. 2017, 288, 343–353. [Google Scholar] [CrossRef]
- Dancer, A.; Wang, M. Kähler Einstein Metrics of Cohomogeneity One and Bundle Construction for Einstein Hermitian Metrics. Math. Ann. 1998, 312, 503–526. [Google Scholar] [CrossRef]
- Apostolov, V.; Calderbank, D.; Gauduchon, P.C. Tonnesen-Friedman: Hamilton 2-forms in Kähler geometry III, extremal metrics and stability. Invent. Math. 2008, 173, 547–601. [Google Scholar] [CrossRef]
- Bogomolov, F. On Guan’s examples of simply connected non-kähler compact complex manifolds. Am. J. Math. 1996, 118, 1037–1046. [Google Scholar] [CrossRef]
- Console, S.; Fino, A. On the de Rham cohomology of solvmanifolds. Ann. Scuola Norm. Super. Pisa 2011, 10, 801–818. [Google Scholar]
- Guan, D. A Note On the classification of Compact Complex Homogeneous Locally Conformal Kähler Manifolds. J. Math. Stat. 2017, 13, 261–267. [Google Scholar] [CrossRef]
- Huckleberry, A. Homogeneous Pseudo-Kähler Manifolds: A Hamiltonian Viewpoint. Note Math. 1990, 10 (Suppl. 2), 337–342. [Google Scholar]
- Podesta, F.; Spiro, A. Kähler manifolds with large isometry group. Osaka J. Math. 1999, 36, 805–833. [Google Scholar]
- Tian, G. Smoothness of the Universal Deformations Space of Compact Calabi-Yau Manifolds and Its Peterson-Well Metric. In Mathematical Aspect of String Theory; Yau, S.T., Ed.; World Scientific: Singapore, 1987; pp. 629–646. [Google Scholar]
- Mok, N.; Zhong, J.Q. Curvature Characterization of Compact Hermitian Symmetric Spaces. J. Diff. Geom. 1986, 23, 15–67. [Google Scholar] [CrossRef]
- Derdzinski, A. Self-dual Kähler manifolds and Einstein manifolds of dimension four. Compos. Math. 1983, 49, 405–433. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, Z.-D.D. A New Proof of a Conjecture on Nonpositive Ricci Curved Compact Kähler–Einstein Surfaces. Mathematics 2018, 6, 21. https://doi.org/10.3390/math6020021
Guan Z-DD. A New Proof of a Conjecture on Nonpositive Ricci Curved Compact Kähler–Einstein Surfaces. Mathematics. 2018; 6(2):21. https://doi.org/10.3390/math6020021
Chicago/Turabian StyleGuan, Zhuang-Dan Daniel. 2018. "A New Proof of a Conjecture on Nonpositive Ricci Curved Compact Kähler–Einstein Surfaces" Mathematics 6, no. 2: 21. https://doi.org/10.3390/math6020021
APA StyleGuan, Z.-D. D. (2018). A New Proof of a Conjecture on Nonpositive Ricci Curved Compact Kähler–Einstein Surfaces. Mathematics, 6(2), 21. https://doi.org/10.3390/math6020021