Some Symmetric Identities Involving the Stirling Polynomials Under the Finite Symmetric Group
Abstract
1. Introduction
2. Symmetric Identities of Stirling Polynomials
3. Symmetric Identities via Higher Order Bernoulli Polynomials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Merca, M. A convolution for complete and elementary symmetric functions. Aequ. Math. 2013, 86, 217–229. [Google Scholar] [CrossRef]
- Qi, F. Diagonal recurrence relations, inequalities, and monotonicity related to the Stirling numbers of the second kind. Math. Inequal. Appl. 2016, 19, 313–323. [Google Scholar] [CrossRef]
- Qi, F. Diagonal recurrence relations for the Stirling numbers of the first kind. Contrib. Discret. Math. 2016, 11, 22–30. Available online: http://hdl.handle.net/10515/sy5wh2dx6 (accessed on 5 November 2018). [CrossRef]
- Qi, F.; Guo, B.-N. A closed form for the Stirling polynomials in terms of the Stirling numbers. Tbil. Math. J. 2017, 10, 153–158. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. A diagonal recurrence relation for the Stirling numbers of the first kind. Appl. Anal. Discret. Math. 2018, 12, 153–165. [Google Scholar] [CrossRef]
- Quaintance, J.; Gould, H.W. Combinatorial Identities for Stirling Numbers; The Unpublished Notes of H. W. Gould with a Foreword by George E. Andrews; World Scientific Publishing Co., Pte. Ltd.: Singapore, 2016. [Google Scholar]
- Schreiber, A. Multivariate Stirling polynomials of the first and second kind. Discret. Math. 2015, 338, 2462–2484. [Google Scholar] [CrossRef]
- Simsek, Y. Identities associated with generalized Stirling type numbers and Eulerian type polynomials. Math. Comput. Appl. 2013, 18, 251–263. [Google Scholar] [CrossRef]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; Based on Notes Left by Harry Bateman; Reprint of the 1955 Original; Robert E. Krieger Publishing Co., Inc.: Melbourne, FL, USA, 1981; Volume III. [Google Scholar]
- Gessel, I.; Stanley, R.P. Stirling polynomials. J. Comb. Theory Ser. A 1978, 24, 24–33. [Google Scholar] [CrossRef]
- Kang, J.Y.; Ryoo, C.S. A research on the some properties and distribution of zeros for Stirling polynomials. J. Nonlinear Sci. Appl. 2016, 9, 1735–1747. [Google Scholar] [CrossRef]
- Roman, S. The Umbral Calculus; Pure and Applied Mathematics; Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers]: New York, NY, USA, 1984; Volume 111. [Google Scholar]
- Seo, J.J.; Kim, T. Some identities of symmetry for Stirling polynomials. Adv. Stud. Contemp. Math. 2016, 26, 255–261. [Google Scholar]
- Qi, F.; Chapman, R.J. Two closed forms for the Bernoulli polynomials. J. Number Theory 2016, 159, 89–100. [Google Scholar] [CrossRef]
- Dolgy, D.V.; Kim, T.; Rim, S.-H.; Lee, S.H. Symmetry identities for the generalized higher-order q-Bernoulli polynomials under S3 arising from p-adic Volkenborn integral on ℤp. Proc. Jangjeon Math. Soc. 2014, 17, 645–650. [Google Scholar]
- Kim, D.S.; Lee, N.; Na, J.; Park, K.H. Abundant symmetry for higher-order Bernoulli polynomials (I). Adv. Stud. Contemp. Math. 2013, 23, 461–482. [Google Scholar]
- Lim, D.; Do, Y. Some identities of Barnes-type special polynomials. Adv. Differ. Equ. 2015, 2015. [Google Scholar] [CrossRef]
- Duran, U.; Acikgoz, M.; Esi, A.; Araci, S. Some new symmetric identities involving q-Genocchi polynomials under S4. J. Math. Anal. 2015, 6, 22–31. [Google Scholar]
- Kim, D.S.; Kim, T. Identities of symmetry for generalized q-Euler polynomials arising from multivariate fermionic p-adic integral on ℤp. Proc. Jangjeon Math. Soc. 2014, 17, 519–525. [Google Scholar]
- Kim, T. Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on ℤp. Russ. J. Math. Phys. 2009, 16, 484–491. [Google Scholar] [CrossRef]
- Kim, T.; Dolgy, D.V.; Kim, D.S. Symmetric identities for degenerate generalized Bernoulli polynomials. J. Nonlinear Sci. Appl. 2016, 9, 677–683. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. Symmetric identities of higher-order degenerate q-Euler polynomials. J. Nonlinear Sci. Appl. 2016, 9, 443–451. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T.; Lee, S.-H.; Seo, J.-J. Identities of symmetry for higher-order q-Euler polynomials. Proc. Jangjeon Math. Soc. 2014, 17, 161–167. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, D.; Qi, F. Some Symmetric Identities Involving the Stirling Polynomials Under the Finite Symmetric Group. Mathematics 2018, 6, 332. https://doi.org/10.3390/math6120332
Lim D, Qi F. Some Symmetric Identities Involving the Stirling Polynomials Under the Finite Symmetric Group. Mathematics. 2018; 6(12):332. https://doi.org/10.3390/math6120332
Chicago/Turabian StyleLim, Dongkyu, and Feng Qi. 2018. "Some Symmetric Identities Involving the Stirling Polynomials Under the Finite Symmetric Group" Mathematics 6, no. 12: 332. https://doi.org/10.3390/math6120332
APA StyleLim, D., & Qi, F. (2018). Some Symmetric Identities Involving the Stirling Polynomials Under the Finite Symmetric Group. Mathematics, 6(12), 332. https://doi.org/10.3390/math6120332
 
        


