Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph
Abstract
:1. Introduction
2. Constructing an Edge Irregular Reflexive Labeling
3. Applications of Graph Labeling
4. Generalized Petersen Graph
5. Conclusions
6. Open Problem
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chartrand, G.; Jacobson, M.S.; Lehel, J.; Oellermann, O.R.; Ruiz, S.; Saba, F. Irregular networks. Congr. Numer. 1988, 64, 187–192. [Google Scholar]
- Lahel, J. Facts and quests on degree irregular assignment. In Graph Theory, Combinatorics and Applications; Wley: New York, NY, USA, 1991; pp. 765–782. [Google Scholar]
- Amar, D.; Togni, O. On irregular strenght of trees. Discret Math. 1998, 190, 15–38. [Google Scholar] [CrossRef]
- Dimitz, J.H.; Garnick, D.K.; Gyárfás, A. On the irregularity strength of the m × n grid. J. Graph Theory 1992, 16, 355–374. [Google Scholar] [CrossRef]
- Gyárfás, A. The irregularity strength of Km,m is 4 for odd m. Discret. Math. 1998, 71, 273–274. [Google Scholar] [CrossRef]
- Nierhoff, T. A tight bound on the irregularity strength of graphs. SIAM. J. Discret. Math. 2000, 13, 313–323. [Google Scholar] [CrossRef]
- Ahmad, A.; Al Mushayt, O.; Bača, M. On edge irregularity strength of graphs. Appl. Math. Comput. 2014, 243, 607–610. [Google Scholar] [CrossRef]
- Bača, M.; Jendroľ, S.; Miller, M.; Ryan, J. On irregular total labellings. Discret. Math. 2007, 307, 1378–1388. [Google Scholar] [CrossRef]
- Haque, K.M.M. Irregular total labelings of Generalized Petersen graphs. J. Graph Theory 2012, 50, 537–544. [Google Scholar]
- Ivančo, J.; Jendroľ, S. Total edge irregularity strength of trees. Discuss. Math. Graph Theory 2006, 26, 449–456. [Google Scholar] [CrossRef]
- Zhang, X.; Ibrahim, M.; Bokhary, S.A.H.; Siddiqui, M.K. Edge Irregular Reflexive Labeling for the Disjoint Union of Gear Graphs and Prism Graphs. Mathematics 2018, 6, 142. [Google Scholar] [CrossRef]
- Bača, M.; Irfan, M.; Ryan, J.; Semabičovǎ-Feňovčkovǎ, A.; Tanna, D. On edge irregular reflexive labelings for the Generalized friendship graphs. Mathematics 2017, 5, 67. [Google Scholar] [CrossRef]
- Tanna, D.; Ryan, J.; Semabičovǎ-Feňovčkovǎ, A. A reflexive edge irregular labelings of prisms and wheels. Australas. J. Comb. 2017, 69, 394–401. [Google Scholar]
- Brandt, S.; Miškuf, J.; Rautenbach, D. On a conjecture about edge irregular total labellings. J. Graph Theory 2008, 57, 333–343. [Google Scholar] [CrossRef]
- Jendroľ, S.; Miškuf, J.; Soták, R. Total edge irregularity strength of complete and complete bipartite graphs. Electron. Notes Discrete Math. 2007, 28, 281–285. [Google Scholar] [CrossRef]
- Jendroľ, S.; Miškuf, J.; Soták, R. Total edge irregularity strength of complete graphs and complete bipartite graphs. Discret. Math. 2010, 310, 400–407. [Google Scholar] [CrossRef] [Green Version]
- Miškuf, J.; Jendroľ, S. On total edge irregularity strength of the grids. Tatra Mt. Math. Publ. 2007, 36, 147–151. [Google Scholar]
- Al-Mushayt, O.; Ahmad, A.; Siddiqui, M.K. On the total edge irregularity strength of hexagonal grid graphs. Australas. J. Comb. 2012, 53, 263–271. [Google Scholar]
- Chunling, T.; Xiaohui, L.; Yuansheng, Y.; Liping, W. Irregular total labellings of Cm□Cn. Utilitas Math. 2010, 81, 3–13. [Google Scholar]
- Bača, M.; Siddiqui, M.K. Total edge irregularity strength of Generalized prism. Appl. Math. Comput. 2014, 235, 168–173. [Google Scholar] [CrossRef]
- Ahmad, A.; Bača, M.; Siddiqui, M.K. On edge irregular total labeling of categorical product of two cycles. Theory Comp. Syst. 2014, 54, 1–12. [Google Scholar] [CrossRef]
- Ahmad, A.; Al Mushayt, O.; Siddiqui, M.K. Total edge irregularity strength of strong product of cycles and paths. UPB Sci. Bull. Ser. A 2014, 76, 147–156. [Google Scholar]
- Ahmad, A.; Siddiqui, M.K.; Afzal, D. On the total edge irregularity strength of zigzag graphs. Australas. J. Comb. 2012, 54, 141–149. [Google Scholar]
- Siddiqui, M.K. On total edge irregularity strength of a categorical product of cycle and path. AKCE J. Graphs. Comb. 2012, 9, 43–52. [Google Scholar]
- Siddiqui, M.K. On tes of subdivision of star. Int. J. Math. Soft Comput. 2012, 12, 75–82. [Google Scholar] [CrossRef]
- Siddiqui, M.K. On irregularity strength of convex polytope graphs with certain pendent edges added. Ars Comb. 2016, 129, 190–210. [Google Scholar]
- Ahmad, A.; Bača, M.; Bashir, Y.; Siddiqui, M.K. Total edge irregularity strength of strong product of two paths. Ars Comb. 2012, 106, 449–459. [Google Scholar]
- Bača, M.; Irfan, M.; Ryan, J.; Semabičovǎ-Feňovčkovǎ, A.; Tanna, D. Note On reflexive irregular edge labelings of graphs. AKCE Int. J. Graphs Comb. 2018. [Google Scholar] [CrossRef]
- Prasanna, N.L.; Sravanthi, K.; Sudhakar, N. Applications of Graph Labeling in Major Areas of Computer Science. Int. J. Res. Comput. Commun. Technol. 2014, 3, 1–5. [Google Scholar]
- Watkins, M.E. A theorem on Tait colorings with an application to Generalized Petersen graphs. J. Comb. Theory 1969, 6, 152–164. [Google Scholar] [CrossRef]
- Haque, K.M. Irregular total labellings of Generalized Petersen graphs. Theory Comput. Syst. 2012, 50, 537–544. [Google Scholar] [CrossRef]
- Jendroľ, S.; Žoldák, V. The irregularity strength of Generalized Petersen graphs. Math. Slovaca. 1995, 45, 107–113. [Google Scholar]
- Tong, C.; Lin, X.; Yang, Y.; Wang, L. Irregular Total Labellings of Some Families of Graphs. Ind. J. Pure Appl. Math. 2009, 40, 155–181. [Google Scholar]
- Ahmad, A.; Siddiqui, M.K.; Ibrahim, M.; Asif, M. On the total irregularity strength of Generalized Petersen Graph. Math Rep. 2016, 68, 197–204. [Google Scholar]
- Naeem, M.; Siddiqui, M.K. Total irregularity strength of disjoint union of isomorphic copies of Generalized Petersen graph’Discrete Mathematics. Algorithms Appl. 2017, 9, 1750071. [Google Scholar]
- Gera, R.; Stanica, P. The spectrum of Generalized Petersen graphs. Australas. J. Comb. 2011, 49, 39–45. [Google Scholar]
- Yegnanarayanan, V. On some aspects of the Generalized Petersen graph. Electron. J. Graph Theory Appl. 2017, 5, 163–178. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guirao, J.L.G.; Ahmad, S.; Siddiqui, M.K.; Ibrahim, M. Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph. Mathematics 2018, 6, 304. https://doi.org/10.3390/math6120304
Guirao JLG, Ahmad S, Siddiqui MK, Ibrahim M. Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph. Mathematics. 2018; 6(12):304. https://doi.org/10.3390/math6120304
Chicago/Turabian StyleGuirao, Juan L. G., Sarfraz Ahmad, Muhammad Kamran Siddiqui, and Muhammad Ibrahim. 2018. "Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph" Mathematics 6, no. 12: 304. https://doi.org/10.3390/math6120304
APA StyleGuirao, J. L. G., Ahmad, S., Siddiqui, M. K., & Ibrahim, M. (2018). Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph. Mathematics, 6(12), 304. https://doi.org/10.3390/math6120304