Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph
Abstract
1. Introduction
2. Constructing an Edge Irregular Reflexive Labeling
3. Applications of Graph Labeling
4. Generalized Petersen Graph
5. Conclusions
6. Open Problem
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chartrand, G.; Jacobson, M.S.; Lehel, J.; Oellermann, O.R.; Ruiz, S.; Saba, F. Irregular networks. Congr. Numer. 1988, 64, 187–192. [Google Scholar]
- Lahel, J. Facts and quests on degree irregular assignment. In Graph Theory, Combinatorics and Applications; Wley: New York, NY, USA, 1991; pp. 765–782. [Google Scholar]
- Amar, D.; Togni, O. On irregular strenght of trees. Discret Math. 1998, 190, 15–38. [Google Scholar] [CrossRef]
- Dimitz, J.H.; Garnick, D.K.; Gyárfás, A. On the irregularity strength of the m × n grid. J. Graph Theory 1992, 16, 355–374. [Google Scholar] [CrossRef]
- Gyárfás, A. The irregularity strength of Km,m is 4 for odd m. Discret. Math. 1998, 71, 273–274. [Google Scholar] [CrossRef]
- Nierhoff, T. A tight bound on the irregularity strength of graphs. SIAM. J. Discret. Math. 2000, 13, 313–323. [Google Scholar] [CrossRef]
- Ahmad, A.; Al Mushayt, O.; Bača, M. On edge irregularity strength of graphs. Appl. Math. Comput. 2014, 243, 607–610. [Google Scholar] [CrossRef]
- Bača, M.; Jendroľ, S.; Miller, M.; Ryan, J. On irregular total labellings. Discret. Math. 2007, 307, 1378–1388. [Google Scholar] [CrossRef]
- Haque, K.M.M. Irregular total labelings of Generalized Petersen graphs. J. Graph Theory 2012, 50, 537–544. [Google Scholar]
- Ivančo, J.; Jendroľ, S. Total edge irregularity strength of trees. Discuss. Math. Graph Theory 2006, 26, 449–456. [Google Scholar] [CrossRef]
- Zhang, X.; Ibrahim, M.; Bokhary, S.A.H.; Siddiqui, M.K. Edge Irregular Reflexive Labeling for the Disjoint Union of Gear Graphs and Prism Graphs. Mathematics 2018, 6, 142. [Google Scholar] [CrossRef]
- Bača, M.; Irfan, M.; Ryan, J.; Semabičovǎ-Feňovčkovǎ, A.; Tanna, D. On edge irregular reflexive labelings for the Generalized friendship graphs. Mathematics 2017, 5, 67. [Google Scholar] [CrossRef]
- Tanna, D.; Ryan, J.; Semabičovǎ-Feňovčkovǎ, A. A reflexive edge irregular labelings of prisms and wheels. Australas. J. Comb. 2017, 69, 394–401. [Google Scholar]
- Brandt, S.; Miškuf, J.; Rautenbach, D. On a conjecture about edge irregular total labellings. J. Graph Theory 2008, 57, 333–343. [Google Scholar] [CrossRef]
- Jendroľ, S.; Miškuf, J.; Soták, R. Total edge irregularity strength of complete and complete bipartite graphs. Electron. Notes Discrete Math. 2007, 28, 281–285. [Google Scholar] [CrossRef]
- Jendroľ, S.; Miškuf, J.; Soták, R. Total edge irregularity strength of complete graphs and complete bipartite graphs. Discret. Math. 2010, 310, 400–407. [Google Scholar] [CrossRef]
- Miškuf, J.; Jendroľ, S. On total edge irregularity strength of the grids. Tatra Mt. Math. Publ. 2007, 36, 147–151. [Google Scholar]
- Al-Mushayt, O.; Ahmad, A.; Siddiqui, M.K. On the total edge irregularity strength of hexagonal grid graphs. Australas. J. Comb. 2012, 53, 263–271. [Google Scholar]
- Chunling, T.; Xiaohui, L.; Yuansheng, Y.; Liping, W. Irregular total labellings of Cm□Cn. Utilitas Math. 2010, 81, 3–13. [Google Scholar]
- Bača, M.; Siddiqui, M.K. Total edge irregularity strength of Generalized prism. Appl. Math. Comput. 2014, 235, 168–173. [Google Scholar] [CrossRef]
- Ahmad, A.; Bača, M.; Siddiqui, M.K. On edge irregular total labeling of categorical product of two cycles. Theory Comp. Syst. 2014, 54, 1–12. [Google Scholar] [CrossRef]
- Ahmad, A.; Al Mushayt, O.; Siddiqui, M.K. Total edge irregularity strength of strong product of cycles and paths. UPB Sci. Bull. Ser. A 2014, 76, 147–156. [Google Scholar]
- Ahmad, A.; Siddiqui, M.K.; Afzal, D. On the total edge irregularity strength of zigzag graphs. Australas. J. Comb. 2012, 54, 141–149. [Google Scholar]
- Siddiqui, M.K. On total edge irregularity strength of a categorical product of cycle and path. AKCE J. Graphs. Comb. 2012, 9, 43–52. [Google Scholar]
- Siddiqui, M.K. On tes of subdivision of star. Int. J. Math. Soft Comput. 2012, 12, 75–82. [Google Scholar] [CrossRef]
- Siddiqui, M.K. On irregularity strength of convex polytope graphs with certain pendent edges added. Ars Comb. 2016, 129, 190–210. [Google Scholar]
- Ahmad, A.; Bača, M.; Bashir, Y.; Siddiqui, M.K. Total edge irregularity strength of strong product of two paths. Ars Comb. 2012, 106, 449–459. [Google Scholar]
- Bača, M.; Irfan, M.; Ryan, J.; Semabičovǎ-Feňovčkovǎ, A.; Tanna, D. Note On reflexive irregular edge labelings of graphs. AKCE Int. J. Graphs Comb. 2018. [Google Scholar] [CrossRef]
- Prasanna, N.L.; Sravanthi, K.; Sudhakar, N. Applications of Graph Labeling in Major Areas of Computer Science. Int. J. Res. Comput. Commun. Technol. 2014, 3, 1–5. [Google Scholar]
- Watkins, M.E. A theorem on Tait colorings with an application to Generalized Petersen graphs. J. Comb. Theory 1969, 6, 152–164. [Google Scholar] [CrossRef]
- Haque, K.M. Irregular total labellings of Generalized Petersen graphs. Theory Comput. Syst. 2012, 50, 537–544. [Google Scholar] [CrossRef]
- Jendroľ, S.; Žoldák, V. The irregularity strength of Generalized Petersen graphs. Math. Slovaca. 1995, 45, 107–113. [Google Scholar]
- Tong, C.; Lin, X.; Yang, Y.; Wang, L. Irregular Total Labellings of Some Families of Graphs. Ind. J. Pure Appl. Math. 2009, 40, 155–181. [Google Scholar]
- Ahmad, A.; Siddiqui, M.K.; Ibrahim, M.; Asif, M. On the total irregularity strength of Generalized Petersen Graph. Math Rep. 2016, 68, 197–204. [Google Scholar]
- Naeem, M.; Siddiqui, M.K. Total irregularity strength of disjoint union of isomorphic copies of Generalized Petersen graph’Discrete Mathematics. Algorithms Appl. 2017, 9, 1750071. [Google Scholar]
- Gera, R.; Stanica, P. The spectrum of Generalized Petersen graphs. Australas. J. Comb. 2011, 49, 39–45. [Google Scholar]
- Yegnanarayanan, V. On some aspects of the Generalized Petersen graph. Electron. J. Graph Theory Appl. 2017, 5, 163–178. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guirao, J.L.G.; Ahmad, S.; Siddiqui, M.K.; Ibrahim, M. Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph. Mathematics 2018, 6, 304. https://doi.org/10.3390/math6120304
Guirao JLG, Ahmad S, Siddiqui MK, Ibrahim M. Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph. Mathematics. 2018; 6(12):304. https://doi.org/10.3390/math6120304
Chicago/Turabian StyleGuirao, Juan L. G., Sarfraz Ahmad, Muhammad Kamran Siddiqui, and Muhammad Ibrahim. 2018. "Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph" Mathematics 6, no. 12: 304. https://doi.org/10.3390/math6120304
APA StyleGuirao, J. L. G., Ahmad, S., Siddiqui, M. K., & Ibrahim, M. (2018). Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph. Mathematics, 6(12), 304. https://doi.org/10.3390/math6120304