Quantum Information: A Brief Overview and Some Mathematical Aspects
Abstract
:1. Introduction
2. The General Framework of Quantum Information and Quantum Computing
2.1. Quantum Mechanics in a Few Words
- In both presentations of quantum mechanics, the state of a closed quantum system is described by a vector (in matrix mechanics) or a wave function (in wave mechanics), noted in both cases, belonging to a finite or infinite Hilbert space .
- In quantum information and quantum computing, the space is finite-dimensional (isomorphic to for qubits or for qudits) and the (normalized) vector , defined up to a phase factor, can be the result (arising from an evolution or transformation of a vector )
- In quantum information and quantum computing, is given by a linear combination of the eigenvectors of an observable in the matrix formulation. An observable is associated with a measurable physical quantity (energy, position, impulsion, spin, etc.). It is represented by a self-adjoint operator A acting on the space . The possible outcomes of a measurement of an observable are the real eigenvalues of the operator A. Measurement in quantum mechanics exhibits a probabilistic nature. More precisely, if (in the case of the finite-dimensional Hilbert space )Observe that the factor is a simple phase factor without importance. By way of example, in the case of , measurement of the qubit in the basis of yields or (up to unimportant phase factors) with the probabilities or , respectively.
- A postulate of quantum mechanics of considerable interest in quantum information and quantum computing concerns the description of a system composed of several sub-systems. The state vector for the system is build from tensors products of the state vectors of the various sub-systems. This may lead to entangled vector states for the composite system. Entanglement constitutes another important resource for quantum information and quantum computing besides the linearity and the non deterministic nature of quantum mechanics. As an example, suppose we have a system of qubits made of two two-level sub-systems. The Hilbert space for the system is , where the first and second corresponds to the first and second sub-systems, respectively. By the tensor product, we can take
2.2. Qubits and Qudits
2.2.1. Qubits
2.2.2. Qudits
2.2.3. Qudits with
2.3. Physical Realizations of Qubits
2.4. Entanglement
2.4.1. Generalities
2.4.2. Entanglement of Qubits
- The system is non entangled (or separable); it is then described by a state such that
- The system is entangled (or non separable); it is then described by a state such that
- either (with the probability ) so that the qubit 2 is a priori (without measurement) in the state
- or (with the probability ) so that the qubit 2 is a priori (without measurement) in the state
2.5. Quantum Gates
2.5.1. One-Qubit Gates
2.5.2. Multi-Qubit Gates
2.5.3. Quantum Computing Algorithms
2.6. No-Cloning Theorem
2.7. Quantum Teleportation
3. Some Mathematical Aspects: Mutually Unbiased Bases
3.1. Introducing MUBs
3.1.1. Generalities about MUBs
3.1.2. Definition of MUBs
3.1.3. Well-Known Results about MUBs
- MUBs are stable under unitary or anti-unitary transformations. More precisely, if two unbiased bases undergo the same unitary or anti-unitary transformation, they remain mutually unbiased.
- The number of MUBs in cannot exceed . Thus
- The maximum number of MUBs is attained when d is a power () of a prime number p. Thus
- When d is a composite number, is not known but it can be shown thatAs a more accurate result, for with prime and positive integer, we have
- In the particular composite case , we have
- For and , there are at least four MUBs.
- For , we have
3.1.4. Interests of MUBs
3.2. Group-Theoretical Construction of MUBs
3.2.1. Standard Basis for SU
3.2.2. Nonstandard Bases for SU
3.2.3. Bases in Quantum Information
3.2.4. MUBs for (p Prime)
3.2.5. MUBs for (p Odd Prime)
3.2.6. MUBs for d Power of a Prime
3.3. Weyl Pairs
3.3.1. Shift and Phase Operators
3.3.2. Generalized Pauli Matrices
3.3.3. Weyl Pair and Groups
3.3.4. MUBs and the Special Linear Group
3.4. Galois Field Approach to MUBs
3.4.1. The Computational Basis
- In the monomial form, we define the vectors of via the correspondences
- In the polynomial form, we can range the vectors of in the order by adopting the lexicographical order for the elements .
3.4.2. Shift and Phase Operators for
3.4.3. Bases in the Frame of
3.4.4. MUBs in the Frame of
3.5. Galois Ring Approach to MUBs
3.5.1. Bases in the Frame of
3.5.2. MUBs in the Frame of
3.5.3. One-Qubit System
3.5.4. Two-Qubit System
4. Closing Remarks
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Kibler, M.R. Galois Fields and Galois Rings Made Easy; ISTE Press–Elsevier: London/Oxford, UK, 2017. [Google Scholar]
- Weyl, H. The Theory of Groups and Quantum Mechanics; Dover Publications: New York, NY, USA, 1931. [Google Scholar]
- Weil, A. On some exponential sums. Proc. Natl. Acad. Sci. USA 1948, 34, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Schwinger, J. Unitary operator bases. Proc. Natl. Acad. Sci. USA 1960, 46, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Ivanović, I.D. Geometrical description of quantal state determination. J. Phys. A Math. Gen. 1981, 14, 3241–3245. [Google Scholar] [CrossRef]
- Kostrikin, A.I.; Kostrikin, I.A.; Ufnarovskiĭ, V.A. Orthogonal decompositions of simple Lie algebras (type An). Trudy Mat. Inst. Steklov 1981, 158, 105–120. (In Russian) [Google Scholar]
- Wootters, W.K.; Zurek, W.H. A single quantum cannot be cloned. Nature 1982, 299, 802. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 10–12 December 1984; pp. 175–179. [Google Scholar]
- Wootters, W.K. Quantum mechanics without probability amplitudes. Found. Phys. 1986, 16, 391–405. [Google Scholar] [CrossRef]
- Wootters, W.K. A Wigner function formulation of finite-state quantum mechanics. Ann. Phys. (N. Y.) 1987, 176, 1–21. [Google Scholar] [CrossRef]
- Patera, J.; Zassenhaus, H. The Pauli matrices in n dimensions and finest gradings of simple Lie algebras of type An−1. J. Math. Phys. 1988, 29, 665–673. [Google Scholar] [CrossRef]
- Lambert, D.; Kibler, M. An algebraic and geometric approach to non-bijective quadratic transformations. J. Phys. A Math. Gen. 1988, 21, 307–343. [Google Scholar] [CrossRef]
- Wootters, W.K.; Fields, B.D. Optimal state-determination by mutually unbiased measurements. Ann. Phys. (N. Y.) 1989, 191, 363–381. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895. [Google Scholar] [CrossRef] [PubMed]
- Kostrikin, A.I.; Tiep, P.H. Orthogonal Decompositions and Integral Lattices; Walter de Gruyter: Berlin, Germany, 1994. [Google Scholar]
- Calderbank, A.R.; Cameron, P.J.; Kantor, W.M.; Seidel, J.J. ℤ4–Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets. Proc. Lond. Math. Soc. 1997, 75, 436–480. [Google Scholar] [CrossRef]
- Berndt, B.C.; Evans, R.J.; Williams, K.S. Gauss and Jacobi Sums; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Zauner, G. Quantendesigns: Grundzüge einer Nichtcommutativen Designtheorie. Bachelor’s Thesis, University of Wien, Wien, Austria, 1999. [Google Scholar]
- Englert, B.-G.; Aharonov, Y. The mean king’s problem: Prime degrees of freedom. Phys. Lett. A 2001, 284, 1–5. [Google Scholar] [CrossRef]
- Mosseri, R.; Dandoloff, R. Geometry of entangled states, Bloch spheres and Hopf fibrations. J. Phys. A Math. Gen. 2001, 34, 10243–10252. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, S.; Boykin, P.O.; Roychowdhury, V.; Vatan, F. A new proof for the existence of mutually unbiased bases. Algorithmica 2002, 34, 512–528. [Google Scholar]
- Lawrence, J.; Brukner, C.; Zeilinger, A. Mutually unbiased binary observable sets on N qubits. Phys. Rev. A 2002, 65, 032320. [Google Scholar] [CrossRef]
- Chaturvedi, S. Aspects of mutually unbiased bases in odd prime power dimensions. Phys. Rev. A 2002, 65, 044301. [Google Scholar] [CrossRef]
- Cerf, N.J.; Bourennane, M.; Karlsson, A.; Gisin, N. Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 2002, 88, 127902. [Google Scholar] [CrossRef] [PubMed]
- Aravind, P.K. Solution to the King’s problem in prime power dimensions. Z. Naturforsch. 2003, 58, 85–92. [Google Scholar] [CrossRef]
- Lawrence, J. Mutually unbiased bases and trinary operator sets for N qutrits. Phys. Rev. A 2004, 70, 012302. [Google Scholar] [CrossRef]
- Klappenecker, A.; Rötteler, M. Constructions of mutually unbiased bases. Lect. Notes Comput. Sci. 2004, 2948, 137–144. [Google Scholar]
- Gibbons, K.S.; Hoffman, M.J.; Wootters, W.K. Discrete phase space based on finite fields. Phys. Rev. A 2004, 70, 062101. [Google Scholar] [CrossRef]
- Pittenger, A.O.; Rubin, M.H. Mutually unbiased bases, generalized spin matrices and separability. Linear Algebr. Appl. 2004, 390, 255–278. [Google Scholar] [CrossRef]
- Vourdas, A. Quantum systems with finite Hilbert space. Rep. Prog. Phys. 2004, 67, 267–320. [Google Scholar] [CrossRef]
- Saniga, M.; Planat, M.; Rosu, H. Mutually unbiased bases and finite projective planes. J. Opt. B Quantum Semiclass. Opt. 2004, 6, L19–L20. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, A.; Horibe, M.; Hashimoto, T. Mean king’s problem with mutually unbiased bases and orthogonal Latin squares. Phys. Rev. A 2005, 71, 052331. [Google Scholar] [CrossRef] [Green Version]
- Paz, J.P.; Roncaglia, A.J.; Saraceno, M. Qubits in phase space: Wigner-function approach to quantum-error correction and the mean-king problem. Phys. Rev. A 2005, 72, 012309. [Google Scholar] [CrossRef]
- Wocjan, P.; Beth, T. New construction of mutually unbiased bases in square dimensions. Quantum Inf. Comput. 2005, 5, 93–101. [Google Scholar]
- Archer, C. There is no generalization of known formulas for mutually unbiased bases. J. Math. Phys. 2005, 46, 022106. [Google Scholar] [CrossRef] [Green Version]
- Grassl, M. On SIC-POVMs and MUBs in dimension 6. In Proceedings of the ERATO Conference on Quantum Information Science (EQIS’04), Tokyo, Japan, 1–5 September 2004; pp. 60–61. [Google Scholar]
- Grassl, M. Tomography of quantum states in small dimensions. Electron. Notes Discret. Math. 2005, 20, 151–164. [Google Scholar] [CrossRef]
- Klappenecker, A.; Rötteler, M. Mutually unbiased bases are complex projective 2-designs. In Proceedings of the 2005 IEEE International Symposium on Information Theory, Adelaide, Australia, 4–9 September 2005; pp. 1740–1744. [Google Scholar]
- Bengtsson, I.; Ericsson, A.A. Mutually unbiased bases and the complementary polytope. Open Syst. Inf. Dyn. 2005, 12, 107–120. [Google Scholar] [CrossRef]
- Durt, T. About mutually unbiased bases in even and odd prime power dimensions. J. Phys. A Math. Gen. 2005, 38, 5267–5283. [Google Scholar] [CrossRef]
- Pittenger, A.O.; Rubin, M.H. Wigner functions and separability for finite systems. J. Phys. A Math. Gen. 2005, 38, 6005–6036. [Google Scholar] [CrossRef] [Green Version]
- Durt, T. About the Mean King’s problem and discrete Wigner distributions. Int. J. Mod. Phys. B 2006, 20, 1742–1760. [Google Scholar] [CrossRef]
- Kibler, M.R. Angular momentum and mutually unbiased bases. Int. J. Mod. Phys. B 2006, 20, 1792–1801. [Google Scholar] [CrossRef]
- Kibler, M.R.; Planat, M. A SU(2) recipe for mutually unbiased bases. Int. J. Mod. Phys. B 2006, 20, 1802–1807. [Google Scholar] [CrossRef]
- Vourdas, A. Galois quantum systems, irreducible polynomials and Riemann surfaces. J. Math. Phys. 2006, 47, 092104. [Google Scholar] [CrossRef] [Green Version]
- Heath, R.W.; Strohmer, T.; Paulraj, A.J. On quasi-orthogonal signatures for CDMA systems. IEEE Trans. Inf. Theory 2006, 52, 1217–1226. [Google Scholar] [CrossRef] [Green Version]
- Vourdas, A. Quantum systems in finite Hilbert space: Galois fields in quantum mechanics. J. Phys. A Math. Theor. 2007, 40, R285–R331. [Google Scholar] [CrossRef]
- Klimov, A.B.; Romero, J.L.; Björk, G.; Sánchez-Soto, L.L. Geometrical approach to mutually unbiased bases. J. Phys. A Math. Theor. 2007, 40, 3987–3998. [Google Scholar] [CrossRef]
- Šulc, P.; Tolar, J. Group theoretical construction of mutually unbiased bases in Hilbert spaces of prime dimensions. J. Phys. A Math. Theor. 2007, 40, 15099. [Google Scholar] [CrossRef]
- Aschbacher, M.; Childs, A.M.; Wocjan, P. The limitations of nice mutually unbiased bases. J. Algebr. Comb. 2007, 25, 111–123. [Google Scholar] [CrossRef]
- Bengtsson, I.; Bruzda, W.; Ericsson, A.A.; Larsson, J.-A.A.; Tadej, W.; Zyczkowski, K. Mutually unbiased bases and Hadamard matrices of order six. J. Math. Phys. 2007, 48, 052106. [Google Scholar] [CrossRef] [Green Version]
- Boykin, P.O.; Sitharam, M.; Tiep, P.H.; Wocjan, P. Mutually unbiased bases and orthogonal decompositions of Lie algebras. Quantum Inf. Comput. 2007, 7, 371–382. [Google Scholar]
- Butterley, P.; Hall, W. Numerical evidence for the maximum number of mutually unbiased bases in dimension six. Phys. Lett. A 2007, 369, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Björk, G.; Romero, J.L.; Klimov, A.B.; Sánchez-Soto, L.L. Mutually unbiased bases and discrete Wigner functions. J. Opt. Soc. Am. B 2007, 24, 371–378. [Google Scholar] [CrossRef]
- Klimov, A.B.; Muñoz, C.; Fernández, A.; Saavedra, C. Optimal quantum-state reconstruction for cold trapped ions. Phys. Rev. A 2008, 77, 060303(R). [Google Scholar] [CrossRef]
- Svetlichny, G. Feynman’s integral is about mutually unbiased bases. arXiv, 2008; arXiv:0708.3079v3. [Google Scholar]
- Kibler, M.R. Variations on a theme of Heisenberg, Pauli and Weyl. J. Phys. A Math. Theor. 2008, 41, 375302. [Google Scholar] [CrossRef] [Green Version]
- Brierley, S.; Weigert, S. Maximal sets of mutually unbiased quantum states in dimension six. Phys. Rev. A 2008, 78, 042312. [Google Scholar] [CrossRef]
- Brierley, S.; Weigert, S. Constructing mutually unbiased bases in dimension six. Phys. Rev. A 2009, 79, 052316. [Google Scholar] [CrossRef]
- Appleby, D.M. SIC-POVMS and MUBS: Geometrical relationships in prime dimension. In Proceedings of the AIP Conference, Foundations of Probability and Physics-5, San Diego, CA, USA, 26–31 May 2009; Volume 1101, pp. 223–232. [Google Scholar]
- Albouy, O. The isotropic lines of . J. Phys. A Math. Theor. 2009, 42, 072001. [Google Scholar] [CrossRef] [Green Version]
- Tolar, J.; Chadzitaskos, G. Feynman’s path integral and mutually unbiased bases. J. Phys. A Math. Theor. 2009, 42, 245306. [Google Scholar] [CrossRef]
- Kibler, M.R. An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, the unitary group and the Pauli group. J. Phys. A Math. Theor. 2009, 42, 353001. [Google Scholar] [CrossRef] [Green Version]
- Durt, T.; Englert, B.-G.; Bengtsson, I.; Zyczkowski, K. On mutually unbiased bases. Int. J. Quantum Inf. 2010, 8, 535–640. [Google Scholar] [CrossRef]
- Diţă, P. Hadamard matrices from mutually unbiased bases. J. Math. Phys. 2010, 51, 072202. [Google Scholar] [CrossRef] [Green Version]
- Zauner, G. Quantum designs: Foundations of a noncommutative design theory. Int. J. Quantum Inf. 2011, 9, 445–507. [Google Scholar] [CrossRef]
- Daoud, M.; Kibler, M.R. Phase operators, phase states and vector phase states for SU3 and SU2,1. J. Math. Phys. 2011, 52, 082101. [Google Scholar] [CrossRef] [Green Version]
- Shalaby, M.; Vourdas, A. Weak mutually unbiased bases. J. Phys. A Math. Theor. 2012, 45, 052001. [Google Scholar] [CrossRef]
- McNulty, D.; Weigert, S. The limited role of mutually unbiased product bases in dimension six. J. Phys. A Math. Theor. 2012, 45, 102001. [Google Scholar] [CrossRef]
- McNulty, D.; Weigert, S. All mutually unbiased product bases in dimension six. J. Phys. A Math. Theor. 2012, 45, 135307. [Google Scholar] [CrossRef]
- Ghiu, I. Generation of all sets of mutually unbiased bases for three-qubit systems. Phys. Scr. 2013, 153, 014027. [Google Scholar] [CrossRef]
- Goyeneche, D. Mutually unbiased triplets from non-affine families of complex Hadamard matrices in dimension 6. J. Phys. A Math. Theor. 2013, 46, 105301. [Google Scholar] [CrossRef] [Green Version]
- Spengler, C.; Kraus, B. Graph-state formalism for mutually unbiased bases. Phys. Rev. A 2013, 88, 052323. [Google Scholar] [CrossRef] [Green Version]
- Olupitan, T.; Lei, C.; Vourdas, A. An analytic function approach to weak mutually unbiased bases. Ann. Phys. (N. Y.) 2016, 371, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Sriwongsa, S.; Zou, Y.M. Orthogonal abelian Cartan subalgebra decomposition of sln over a finite commutative ring. Linear Multilinear Algebra 2018. [Google Scholar] [CrossRef]
- Rao, H.S.S.; Sirsi, S.; Bharath, K. Mutually disjoint, maximally commuting set of physical observables for optimum state determination. arXiv, 2018; arXiv:1809.06762. [Google Scholar]
- Trifa, Y. Utilisation et construction de bases mutuellement non biaisées en théorie de l’information quantique. In Rapport de Stage, IPN Lyon—ENS Lyon; IPN: Lyon, France; ENS: Lyon, France, 2018. [Google Scholar]
- IBM Quantum Experience. Available online: https://quantumexperience.ng.bluemix.net/qx/experience (accessed on 21 November 2018).
- ATOS Quantum Learning Machine. Available online: https://atos.net/en/insights-and-innovation/quantum-computing/atos-quantum (accessed on 21 November 2018).
Gate [G] | Identity Gate [I] | Not Gate [NOT] | Phase Gate [S] | Hadamard Gate [H] |
---|---|---|---|---|
matrix form G |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kibler, M.R. Quantum Information: A Brief Overview and Some Mathematical Aspects. Mathematics 2018, 6, 273. https://doi.org/10.3390/math6120273
Kibler MR. Quantum Information: A Brief Overview and Some Mathematical Aspects. Mathematics. 2018; 6(12):273. https://doi.org/10.3390/math6120273
Chicago/Turabian StyleKibler, Maurice R. 2018. "Quantum Information: A Brief Overview and Some Mathematical Aspects" Mathematics 6, no. 12: 273. https://doi.org/10.3390/math6120273
APA StyleKibler, M. R. (2018). Quantum Information: A Brief Overview and Some Mathematical Aspects. Mathematics, 6(12), 273. https://doi.org/10.3390/math6120273