The Coefficients of Powers of Bazilević Functions
Abstract
:1. Introduction
2. Powers of Bazilević Functions
3. Proof of Theorems
4. A Fekete-Szegö Inequality
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Branges, L.D. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Brannan, D.A.; Kirwan, W.E. On some classes of bounded univalent functions. J. Lond. Math. Soc. 1969, 1, 431–443. [Google Scholar] [CrossRef]
- Kaplan, W. Close-to-convex schlicht functions. Mich. Math. J. 1952, 1, 169–185. [Google Scholar] [CrossRef]
- Thomas, D.K. On starlike and close-to-convex univalent functions. J. Lond. Math. Soc. 1967, 42, 427–435. [Google Scholar] [CrossRef]
- Singh, R. On Bazilević functions. Proc. Am. Math. Soc. 1973, 38, 261–271. [Google Scholar]
- Marjono; Sokól, J.; Thomas, D.K. The fifth and sixth coefficients for Bazilevič functions B1(α). Mediter. J. Math. 2017, 14, 158. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, V. On a coefficient conjecture for Bazilevič functions. Mathematics. preprint.
- Thomas, D.K. On the coefficients of Bazilević functions with logarithmic growth. Indian J. Math. 2015, 57, 403–418. [Google Scholar]
- Al-Oboudi, F.M. n-Bazilevic functions. Abstr. Appl. Anal. 2012, 2012, 383592. Available online: https://www.hindawi.com/journals/aaa/2012/383592/abs/ (accessed on 2 June 2018). [CrossRef]
- Bazilević, I.E. On a case integrability in quadratures of the Loewner-Kufarev equation. Mat. Sb. NS 1955, 37, 471–476. [Google Scholar]
- Deng, Q. On the coefficients of Bazilevič functions and circularly symmetric functions. Appl. Math. Lett. 2011, 24, 991–995. [Google Scholar] [CrossRef]
- Girela, D. Logarithmic coefficients of univalent functions. Ann. Acad. Sci. Fenn. Math. 2000, 25, 337–350. [Google Scholar]
- Keogh, F.R.; Miller, S.S. On the coefficients of Bazilevič functions. Proc. Am. Math. Soc. 1971, 30, 492–496. [Google Scholar]
- Kim, Y.C. A note on growth theorem of Bazilevič functions. Appl. Math. Comput. 2009, 208, 542–546. [Google Scholar] [CrossRef]
- Sheil-Small, T. On Bazilević functions. Quart. J. Math. Oxford Ser. 1972, 23, 135–142. [Google Scholar] [CrossRef]
- Thomas, D.K. On a subclass of Bazilević functions. Int. J. Math. Math. Sci. 1985, 8, 779–783. [Google Scholar] [CrossRef]
- El-Yagubi, E.; Darus, M. Bazilević P-valent functions associated with generalized hypergeometric functions. Kragujev. J. Math. 2015, 39, 111–120. [Google Scholar] [CrossRef]
- Zamorski, J. On Bazilević schlicht functions. Ann. Polon. Math. 1962, 12, 83–90. [Google Scholar] [CrossRef]
- Littlewood, J.E.; Paley, R.E.A.C. A proof that and odd schlicht function has bounded coefficients. J. Lond. Math. Soc. 1932, 7, 167–169. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine Bermerkung uber ungerade schlichte functions. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Hayman, W.K.; Hummel, J.A. Coefficients of powers of univalent functions. Complex Var. Theory Appl. 1986, 7, 51–70. [Google Scholar] [CrossRef]
- Jahangiri, M. On the coefficients of powers of a class of Bazilevič functions. Indian J. Pure Appl. Math. 1986, 17, 1140–1144. [Google Scholar]
- Marjono; Thomas, D.K. A note on the powers of Bazilević functions. Int. J. Math. Anal. 2015, 9, 2061–2067. [Google Scholar] [CrossRef]
- Darus, M.; Thomas, D.K. On the Fekete-Szegö theorem for close-to-convex functions. Math. Jpn. 1996, 44, 507–511. [Google Scholar]
- London, R.R. Fekete-Szegö inequalities for close-to-convex functions. Proc. Am. Math. Soc. 1993, 117, 947–950. [Google Scholar]
- Eenigenburg, P.J.; Silvia, E.M. A coefficient inequality for Bazilevič functions. Ann. Univ. Mariae Curie- Skłodowska Sect. A 1973, 27, 5–12. [Google Scholar]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Abdel-Gawad, H.R.; Thomas, D.K. The Fekete-Szegö problem for strongly close-to-convex functions. Proc. Am. Math. Soc. 1992, 114, 345–349. [Google Scholar]
- Farahmand, K.; Jahangiri, J.M. Fekete-Szegö problem and Littlewood-Paley conjecture for powers of close-to-convex functions. Sci. Math. 1998, 1, 89–95. [Google Scholar]
- Carathéodory, G. Uber den Variabilitätsbbereich der Fourieŕ schen Konstanten von positiven harmonischen Funktionen. Rend. Circ. Mat. Palermo 1911, 32, 193–217. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Springer: New York, NY, USA, 1983. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, N.E.; Kumar, V.; Park, J.H. The Coefficients of Powers of Bazilević Functions. Mathematics 2018, 6, 263. https://doi.org/10.3390/math6110263
Cho NE, Kumar V, Park JH. The Coefficients of Powers of Bazilević Functions. Mathematics. 2018; 6(11):263. https://doi.org/10.3390/math6110263
Chicago/Turabian StyleCho, Nak Eun, Virendra Kumar, and Ji Hyang Park. 2018. "The Coefficients of Powers of Bazilević Functions" Mathematics 6, no. 11: 263. https://doi.org/10.3390/math6110263
APA StyleCho, N. E., Kumar, V., & Park, J. H. (2018). The Coefficients of Powers of Bazilević Functions. Mathematics, 6(11), 263. https://doi.org/10.3390/math6110263