Interpolative Reich–Rus–Ćirić Type Contractions on Partial Metric Spaces
Abstract
:1. Introduction and Preliminaries
- (i)
- A sequence converges to the limit ξ if ;
- (ii)
- A sequence is fundamental or Cauchy if exists and is finite;
- (iii)
- A partial metric space is complete if each fundamental sequence converges to a point such that ;
- (iv)
- A mapping is continuous at a point if for each , there exists such that .
- (a)
- A sequence is fundamental in the framework of a partial metric if and only if it is a fundamental sequence in the setting of the corresponding standard metric space .
- (b)
- A partial metric space is complete if and only if the corresponding standard metric space is complete. Moreover,
- (c)
- If as in a partial metric space with , then we have
2. Main Results
1 | 3 | 4 | 7 | |
1 | 1 | 3 | 4 | 7 |
3 | 3 | 3 | 4 | 7 |
4 | 4 | 4 | 4 | 7 |
7 | 7 | 7 | 7 | 7 |
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76. [Google Scholar]
- Karapinar, E. Revisiting the Kannan Type Contractions via Interpolation. Adv. Theory Nonlinear Anal. Appl. 2018, 2, 85–87. [Google Scholar] [CrossRef]
- Reich, S. Some remarks concerning contraction mappings. Can. Math. Bull. 1971, 14, 121–124. [Google Scholar] [CrossRef]
- Reich, S. Fixed point of contractive functions. Boll. Unione Mat. Ital. 1972, 4, 26–42. [Google Scholar]
- Reich, S. Kannan’s fixed point theorem. Boll. Unione Mat. Ital. 1971, 4, 1–11. [Google Scholar]
- Rus, I.A. Principles and Applications of the Fixed Point Theory; Editura Dacia: Clui-Napoca, Romania, 1979. (In Romanian) [Google Scholar]
- Rus, I.A. Generalized Contractions and Applications; Cluj University Press: Clui-Napoca, Romania, 2001. [Google Scholar]
- Matthews, S.G. Partial metric topology. Ann. N. Y. Acad. Sci. 1994, 728, 183–197. [Google Scholar] [CrossRef]
- Altun, I.; Sola, F.; Simsek, H. Generalized contractions on partial metric spaces. Topol. Appl. 2010, 157, 2778–2785. [Google Scholar] [CrossRef]
- Aydi, H.; Karapinar, E.; Kumam, P. A Note on “[Modied Proof of Caristi’s Fixed Point Theorem on Partial Metric Spaces, Journal of Inequalities and Applications 2013, 2013:210]”. J. Inequal. Appl. 2013. [Google Scholar] [CrossRef]
- Aydi, H.; Amor, S.H.; Karapinar, E. Berinde Type generalized contractions on partial metric spaces. Abstr. Appl. Anal. 2013, 2013, 312479. [Google Scholar] [CrossRef]
- Aydi, H.; Karapinar, E.; Shatanawi, W. Coupled fixed point results for (ϕ)-weakly contractive condition in ordered partial metric spaces. Comput. Math. Appl. 2011, 62, 4449–4460. [Google Scholar] [CrossRef]
- Aydi, H.; Karapinar, E.; Rezapour, S. A generalized Meir-Keeler contraction type on partial metric spaces. Abstr. Appl. Anal. 2012, 2012, 287127. [Google Scholar] [CrossRef]
- Aydi, H.; Karapinar, E. A Meir-Keeler common type fixed point theorem on partial metric spaces. Fixed Point Theory Appl. 2012, 2012, 26. [Google Scholar] [CrossRef]
- Ćirić, L.J.; Samet, B.; Aydi, H.; Vetro, C. Common fixed points of generalized contractions on partial metric spaces and an application. Appl. Math. Comput. 2011, 218, 2398–2406. [Google Scholar] [CrossRef]
- Chi, K.P.; Karapinar, E.; Thanh, T.D. A Generalized contraction principle in partial metric spaces. Math. Comput. Model. 2012, 55, 1673–1681. [Google Scholar] [CrossRef]
- Karapinar, E.; Erhan, Y.M.; Ulus, A.Y. Fixed Point Theorem for Cyclic Maps on Partial Metric Spaces. Appl. Math. Inf. Sci. 2012, 6, 239–244. [Google Scholar]
- Karapinar, E.; Chi, K.P.; Thanh, T.D. A generalization of Ciric quasi-contractions. Abstr. Appl. Anal. 2012, 2012. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karapinar, E.; Agarwal, R.; Aydi, H. Interpolative Reich–Rus–Ćirić Type Contractions on Partial Metric Spaces. Mathematics 2018, 6, 256. https://doi.org/10.3390/math6110256
Karapinar E, Agarwal R, Aydi H. Interpolative Reich–Rus–Ćirić Type Contractions on Partial Metric Spaces. Mathematics. 2018; 6(11):256. https://doi.org/10.3390/math6110256
Chicago/Turabian StyleKarapinar, Erdal, Ravi Agarwal, and Hassen Aydi. 2018. "Interpolative Reich–Rus–Ćirić Type Contractions on Partial Metric Spaces" Mathematics 6, no. 11: 256. https://doi.org/10.3390/math6110256
APA StyleKarapinar, E., Agarwal, R., & Aydi, H. (2018). Interpolative Reich–Rus–Ćirić Type Contractions on Partial Metric Spaces. Mathematics, 6(11), 256. https://doi.org/10.3390/math6110256