Integral Representations of the Catalan Numbers and Their Applications
Abstract
:1. Introduction
2. Integral Representations of the Catalan Numbers
2.1. Penson–Sixdeniers’ Integral Representations in 2001
2.2. Dana-Picard’s Integral Representations in 2005
2.3. Dana-Picard’s Integral Representations in 2010 and 2011
2.4. Dana-Picard–Zeitoun–Qi’s Integral Representations in 2012 and 2016
2.5. Shi–Liu–Qi’s Integral Representation in 2015
2.6. Qi–Shi–Liu’s Integral Representations in 2015
2.7. Qi’s Integral Representations in 2017
2.8. Qi–Akkurt–Yildirim’s Integral Representation
3. Catalan–Qi’s Function and its Integral Representations
4. Discussing Various Integral Representations
4.1. Discussing Equation (2)
4.2. Discussing Equation (7)
4.3. Discussing Theorems 3 and 4
4.4. Discussing Equation (15)
4.5. Discussing Equation (19)
4.6. Discussing Equation (25)
4.7. Discussing Equation (26)
4.8. Discussing Equation (28)
4.9. Discussing Equation (34)
4.10. Discussing Equation (38)
4.11. Discussing Equations (39) and (40)
4.12. The Beta Function and Reciprocals of the Catalan Numbers
5. Applications of Integral Representations
5.1. An Application of Equation (2)
5.2. An Application of Equation (19)
5.3. Applications of Equation (26)
5.4. Applications of Equation (39)
6. Power Series whose Coefficients Involve Catalan Numbers
6.1. Koshy–Gao’s Result
6.2. Beckwith–Harbor–Abel’s Result
6.3. Lehmer’s Result
6.4. Beckwith–Harbor–Amdeberhan–Guan–Jiu–Moll–Vignat’s Results
7. Sums of Some New Series
7.1. Sums of Two Finite and Infinite Series
7.2. Sums of Three Finite Series
7.3. Sums of Three Infinite Power Series
7.4. A New Proof for the Sum of a Power Series
7.5. More Sums of Series Involving Catalan or Catalan–Qi Numbers
8. An Alternative Proof of the Formula (51)
9. Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Larcombe, P. On the history of the Catalan numbers: A first record in China. Math. Today (Southend-on-Sea) 1999, 35, 89. [Google Scholar]
- Larcombe, P.J. The 18th century Chinese discovery of the Catalan numbers. Math. Spectr. 1999/2000, 32, 5–7. [Google Scholar]
- Liu, J.J. Ming Antu and Catalan numbers. J. Math. Res. Expos. 2002, 22, 589–594. (In Chinese) [Google Scholar]
- Luo, J.J. Ming Antu, the first discoverer of the Catalan numbers. Neimenggu Daxue Xuebao 1988, 19, 239–245. (In Chinese) [Google Scholar]
- Luo, J.J. Catalan numbers in the history of mathematics in China. In Combinatorics and Graph Theory (Hefei, 1992); World Scientific Publishing: River Edge, NJ, USA, 1993; pp. 68–70. [Google Scholar]
- Luo, J.J. Ming Antu and his power series expansions. In Seki, Founder of Modern Mathematics in Japan; Springer Proceedings in Mathematics and Statistics; Springer: Tokyo, Japan, 2013; Volume 39, pp. 299–310. [Google Scholar] [CrossRef]
- Ma, X.R. Notes on a result due to Ming Antu. J. Math. Res. Expos. 2002, 22, 595–598. (In Chinese) [Google Scholar]
- Ma, X.R. The general solution of Ming Antu’s problem. Acta Math. Sin. (Engl. Ser.) 2004, 20, 157–162. [Google Scholar] [CrossRef]
- Te, G.S. Catalan numbers in the Xiang shu yi yuan. In Collected Research Papers on the History of Mathematics; Inner Mongolia University Press: Hohhot, China, 1991; Volume 2, pp. 105–112. (In Chinese) [Google Scholar]
- Liu, F.-F.; Shi, X.-T.; Qi, F. A logarithmically completely monotonic function involving the gamma function and originating from the Catalan numbers and function. Glob. J. Math. Anal. 2015, 3, 140–144. [Google Scholar] [CrossRef]
- Qi, F.; Akkurt, A.; Yildirim, H. Catalan numbers, k-gamma and k-beta functions, and parametric integrals. J. Comput. Anal. Appl. 2018, 25, 1036–1042. [Google Scholar]
- Qi, F.; Cerone, P. Several Expressions, Some Properties, and a Double Inequality of the Fuss–Catalan Numbers; ResearchGate Research: Berlin, Germany, 2015. [Google Scholar] [CrossRef]
- Mahmoud, M.; Qi, F. Three identities of the Catalan–Qi numbers. Mathematics 2016, 4, 35. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Logarithmically complete monotonicity of a function related to the Catalan–Qi function. Acta Univ. Sapientiae Math. 2016, 8, 93–102. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Logarithmically complete monotonicity of Catalan–Qi function related to Catalan numbers. Cogent Math. 2016, 3, 1179379. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Some properties and generalizations of the Catalan, Fuss, and Fuss–Catalan numbers. In Mathematical Analysis and Applications: Selected Topics; Dutta, H., Ruzhansky, M., Agarwal, R.P., Eds.; Wiley: Hoboken, NJ, USA; ResearchGate Research: Berlin, Germany, 2015. [Google Scholar] [CrossRef]
- Qi, F.; Mahmoud, M.; Shi, X.-T.; Liu, F.-F. Some properties of the Catalan–Qi function related to the Catalan numbers. SpringerPlus 2016, 5, 1126. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Shi, X.-T.; Cerone, P. A Unified Generalization of the Catalan, Fuss, and Fuss–Catalan Numbers and the Catalan–Qi Function; ResearchGate Working Paper; ResearchGate Research: Berlin, Germany, 2015. [Google Scholar] [CrossRef]
- Qi, F.; Shi, X.-T.; Liu, F.-F.; Kruchinin, D.V. Several formulas for special values of the Bell polynomials of the second kind and applications. J. Appl. Anal. Comput. 2017, 7, 857–871. [Google Scholar] [CrossRef]
- Qi, F.; Shi, X.-T.; Mahmoud, M.; Liu, F.-F. Schur-convexity of the Catalan–Qi function related to the Catalan numbers. Tbilisi Math. J. 2016, 9, 141–150. [Google Scholar] [CrossRef]
- Qi, F.; Shi, X.-T.; Mahmoud, M.; Liu, F.-F. The Catalan numbers: a generalization, an exponential representation, and some properties. J. Comput. Anal. Appl. 2017, 23, 937–944. [Google Scholar]
- Qi, F.; Zou, Q.; Guo, B.-N. Identities of the Chebyshev Polynomials, the Inverse of a Triangular Matrix, and Identities of the Catalan Numbers; ResearchGate Working Paper; ResearchGate Research: Berlin, Germany, 2017. [Google Scholar] [CrossRef]
- Shi, X.-T.; Liu, F.-F.; Qi, F. An integral representation of the Catalan numbers. Glob. J. Math. Anal. 2015, 3, 130–133. [Google Scholar] [CrossRef]
- Yin, L.; Qi, F. Several series identities involving the Catalan numbers. Preprints 2017, 2017030029. [Google Scholar] [CrossRef]
- Zou, Q. Analogues of several identities and supercongruences for the Catalan–Qi numbers. J. Inequal. Spec. Funct. 2016, 7, 235–241. [Google Scholar]
- Zou, Q. The q-binomial inverse formula and a recurrence relation for the q-Catalan–Qi numbers. J. Math. Anal. 2017, 8, 176–182. [Google Scholar]
- Grimaldi, R.P. Fibonacci and Catalan Numbers: An Introduction; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Koshy, T. Catalan Numbers with Applications; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Roman, S. An Introduction to Catalan Numbers, with a foreword by Richard Stanley; Compact Textbook in Mathematics; Birkhäuser/Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Stanley, R.P. Catalan Numbers; Cambridge University Press: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Penson, K.A.; Sixdeniers, J.-M. Integral representations of Catalan and related numbers. J. Integer Seq. 2001, 4, Art. 01.2.5. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; Cambridge University Press: New York, NY, USA, 2010. Available online: http://dlmf.nist.gov/ (accessed on 18 May 2017).
- Sneddon, I.N. The Use of Integral Transforms; McGraw-Hill: New York, NY, USA, 1974. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 8th ed.; Translated from Russian, Translation Edited and with a Preface by Daniel Zwillinger and Victor Moll, Revised from the 7th ed.; Elsevier/Academic Press: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Marichev, O.I. Handbook of Integral Transforms of Higher Transcendental Functions: Theory and Algorithmic Tables; Gakhov, F.D., Ed.; Mathematics and Its Applications; Ellis Horwood Ltd.: Hemel Hempstead, UK, 1983. [Google Scholar]
- Guo, B.-N.; Qi, F. An explicit formula for Bell numbers in terms of Stirling numbers and hypergeometric functions. Glob. J. Math. Anal. 2014, 2, 243–248. [Google Scholar] [CrossRef]
- Qi, F. An explicit formula for the Bell numbers in terms of the Lah and Stirling numbers. Mediterr. J. Math. 2016, 13, 2795–2800. [Google Scholar] [CrossRef]
- Qi, F. Some inequalities for the Bell numbers. Proc. Indian Acad. Sci. Math. Sci. 2017, 127. in press. [Google Scholar] [CrossRef]
- Qi, F.; Shi, X.-T.; Liu, F.-F. Expansions of the exponential and the logarithm of power series and applications. Arab. J. Math. 2017, 6, 95–108. [Google Scholar] [CrossRef]
- Dana-Picard, T. Parametric integrals and Catalan numbers. Int. J. Math. Educ. Sci. Technol. 2005, 36, 410–414. [Google Scholar] [CrossRef]
- Dana-Picard, T. Integral presentations of Catalan numbers. Int. J. Math. Educ. Sci. Technol. 2010, 41, 63–69. [Google Scholar] [CrossRef]
- Dana-Picard, T. Integral presentations of Catalan numbers and Wallis formula. Int. J. Math. Educ. Sci. Technol. 2011, 42, 122–129. [Google Scholar] [CrossRef]
- Kazarinoff, D.K. On Wallis’ formula. Edinb. Math. Notes 1956, 40, 19–21. [Google Scholar] [CrossRef]
- Qi, F. Bounds for the ratio of two gamma functions. J. Inequal. Appl. 2010, 2010, 493058. [Google Scholar] [CrossRef]
- Qi, F. Parametric integrals, the Catalan numbers, and the beta function. Elem. Math. 2017, 72, 103–110. [Google Scholar] [CrossRef]
- Dana-Picard, T.; Zeitoun, D.G. Parametric improper integrals, Wallis formula and Catalan numbers. Int. J. Math. Educ. Sci. Technol. 2012, 43, 515–520. [Google Scholar] [CrossRef]
- Qi, F. An improper integral with a square root. Preprints 2016, 2016100089. [Google Scholar] [CrossRef]
- Temme, N.M. Special Functions: An Introduction to Classical Functions of Mathematical Physics; A Wiley-Interscience Publication; John Wiley & Sons, Inc.: New York, NY, USA, 1996. [Google Scholar] [CrossRef]
- Qi, F.; Shi, X.-T.; Liu, F.-F. An Integral Representation, Complete Monotonicity, and Inequalities of the Catalan Numbers; ResearchGate Technical Report; ResearchGate Research: Berlin, Germany, 2015. [Google Scholar] [CrossRef]
- Qi, F.; Shi, X.-T.; Liu, F.-F. An Exponential Representation for a Function Involving the Gamma Function and Originating from the Catalan Numbers; ResearchGate Research: Berlin, Germany, 2015. [Google Scholar] [CrossRef]
- Guo, B.-N.; Qi, F. On the Wallis formula. Int. J. Anal. Appl. 2015, 8, 30–38. [Google Scholar]
- Qi, F. Bounds for the ratio of two gamma functions: From Gautschi’s and Kershaw’s inequalities to complete monotonicity. Turk. J. Anal. Number Theory 2014, 2, 152–164. [Google Scholar] [CrossRef]
- Qi, F.; Li, W.-H. A logarithmically completely monotonic function involving the ratio of gamma functions. J. Appl. Anal. Comput. 2015, 5, 626–634. [Google Scholar] [CrossRef]
- Qi, F.; Luo, Q.-M. Bounds for the ratio of two gamma functions: From Wendel’s asymptotic relation to Elezović-Giordano-Pečarić’s theorem. J. Inequal. Appl. 2013, 542. [Google Scholar] [CrossRef]
- Qi, F.; Luo, Q.-M. Bounds for the ratio of two gamma functions—From Wendel’s and related inequalities to logarithmically completely monotonic functions. Banach J. Math. Anal. 2012, 6, 132–158. [Google Scholar] [CrossRef]
- Qi, F.; Mahmoud, M. Some properties of a function originating from geometric probability for pairs of hyperplanes intersecting with a convex body. Math. Comput. Appl. 2016, 21, 27. [Google Scholar] [CrossRef]
- Qi, F.; Mortici, C. Some best approximation formulas and inequalities for the Wallis ratio. Appl. Math. Comput. 2015, 253, 363–368. [Google Scholar] [CrossRef]
- Zhou, R.R.; Chu, W. Identities on extended Catalan numbers and their q-analogs. Graphs Comb. 2016, 32, 2183–2197. [Google Scholar] [CrossRef]
- Nkwanta, A.; Tefera, A. Curious relations and identities involving the Catalan generating function and numbers. J. Integer Seq. 2013, 16, Art. 13.9.5. [Google Scholar]
- Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar] [CrossRef]
- Widder, D.V. The Laplace Transform; Princeton Mathematical Series 6; Princeton University Press: Princeton, NJ, USA, 1941. [Google Scholar]
- Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1934. [Google Scholar]
- Marshall, A.W.; Olkin, I.; Arnold, B.C. Inequalities: Theory of Majorization and Its Applications, 2nd ed.; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Schilling, R.L.; Song, R.; Vondraček, Z. Bernstein Functions—Theory and Applications, 2nd ed.; de Gruyter Studies in Mathematics 37; Walter de Gruyter: Berlin, Germany, 2012. [Google Scholar] [CrossRef]
- Koshy, T.; Gao, Z.-G. Convergence of a Catalan series. Coll. Math. J. 2012, 43, 141–146. [Google Scholar] [CrossRef]
- Beckwith, D.; Harbor, S. Problem 11765. Am. Math. Mon. 2014, 121, 267. [Google Scholar] [CrossRef]
- Abel, U. Reciprocal Catalan sums: Solution to Problem 11765. Am. Math. Mon. 2016, 123, 405–406. [Google Scholar] [CrossRef]
- Lehmer, D.H. Interesting series involving the central binomial coefficient. Am. Math. Mon. 1985, 92, 449–457. [Google Scholar] [CrossRef]
- Amdeberhan, T.; Guan, X.; Jiu, L.; Moll, V.H.; Vignat, C. A series involving Catalan numbers: Proofs and demonstrations. Elem. Math. 2016, 71, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau of Standards, Applied Mathematics Series 55, 10th Printing; U.S. Government Printing Office: Washington, DC, USA, 1972.
- Qi, F.; Guo, B.-N. Integral representations of Catalan numbers and their applications. Preprints 2017, 2017040040. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, F.; Guo, B.-N. Integral Representations of the Catalan Numbers and Their Applications. Mathematics 2017, 5, 40. https://doi.org/10.3390/math5030040
Qi F, Guo B-N. Integral Representations of the Catalan Numbers and Their Applications. Mathematics. 2017; 5(3):40. https://doi.org/10.3390/math5030040
Chicago/Turabian StyleQi, Feng, and Bai-Ni Guo. 2017. "Integral Representations of the Catalan Numbers and Their Applications" Mathematics 5, no. 3: 40. https://doi.org/10.3390/math5030040
APA StyleQi, F., & Guo, B.-N. (2017). Integral Representations of the Catalan Numbers and Their Applications. Mathematics, 5(3), 40. https://doi.org/10.3390/math5030040