Stagnation-Point Flow towards a Stretching Vertical Sheet with Slip Effects
Abstract
:1. Introduction
2. Mathematical Formulation
3. Results and Discussion
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Karwe, M.V.; Jaluria, Y. Fluid flow and mixed convection transport from a moving plate in rolling and extrusion processes. ASME J. Heat Transf. 1998, 110, 655–661. [Google Scholar] [CrossRef]
- Crane, L.J. Flow past a stretching plate. J. Appl. Math. Phys. 1970, 21, 645–647. [Google Scholar] [CrossRef]
- Chiam, T.C. Heat transfer with variable conductivity in a stagnation-point flow towards a stretching sheet. Int. Commun. Heat Mass Transf. 1996, 23, 239–248. [Google Scholar] [CrossRef]
- Mahapatra, T.R.; Gupta, A.S. Magnetohydrodynamic stagnation-point flow towards a stretching sheet. Acta Mech. 2001, 152, 191–196. [Google Scholar] [CrossRef]
- Mahapatra, T.R.; Gupta, A.S. Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass Transf. 2002, 38, 517–521. [Google Scholar] [CrossRef]
- Ishak, A.; Nazar, R.; Pop, I. Mixed convection boundary layers in the stagnation point flow toward a stretching vertical sheet. Meccanica 2006, 41, 509–518. [Google Scholar] [CrossRef]
- Ishak, A.; Lok, Y.Y.; Pop, I. Stagnation-point flow over a shrinking sheet in a micropolar fluid. Chem. Eng. Commun. 2010, 197, 1417–1427. [Google Scholar] [CrossRef]
- Layek, G.C.; Mukhopadhyay, S.; Samad, S.A. Heat and mass transfer analysis for boundary layer stagnation-point flow towards a heated porous stretching sheet with heat absorption/generation and suction/blowing. Int. Commun. Heat Mass Transf. 2007, 34, 347–356. [Google Scholar] [CrossRef]
- Nadeem, S.; Hussain, A.; Khan, M. HAM solutions for boundary layer flow in the region of the stagnation point towards a stretching sheet. Commun. Nonlinear Sci. Numer. Simulat. 2010, 15, 475–481. [Google Scholar] [CrossRef]
- Bachok, N.; Ishak, A.; Pop, I. On the stagnation-point flow towards a stretching sheet with homogeneous-heterogeneous reactions effects. Commun. Nonlinear Sci. Numer. Simulat. 2011, 16, 4296–4302. [Google Scholar] [CrossRef]
- Bhattacharyya, K.; Layek, G.C. Effects of suction/blowing on steady boundary layer stagnation-point flow and heat transfer towards a shrinking sheet with thermal radiation. Int. J. Heat Mass Transf. 2011, 54, 302–307. [Google Scholar] [CrossRef]
- Lok, Y.Y.; Ishak, A.; Pop, I. MHD stagnation-point flow towards a shrinking sheet. Int. J. Numer. Meth. Heat Fluid Flow 2011, 2, 61–72. [Google Scholar] [CrossRef]
- Bhattacharyya, K.; Mukhopadhyay, S.; Layek, G.C. Slip effects on boundary layer stagnation-point flow and heat transfer towardsa shrinking sheet. Int. J. Heat Mass Transf. 2011, 54, 308–313. [Google Scholar] [CrossRef]
- Yoshimura, A.; Prudhomme, R.K. Wall slip corrections for Couette and parallel disc viscometers. J. Rheol. 1988, 32, 53–67. [Google Scholar] [CrossRef]
- Andersson, H.I. Slip flow past a stretching surface. Acta Mech. 2002, 158, 121–125. [Google Scholar] [CrossRef]
- Wang, C.Y. Flow due to a stretching boundary with partial slip—An exact solution of the Navier-Stokes equations. Chem. Eng. Sci. 2002, 57, 3745–3747. [Google Scholar] [CrossRef]
- Wang, C.Y. Stagnation slip flow and heat transfer on a moving plate. Chem. Eng. Sci. 2006, 61, 7668–7672. [Google Scholar] [CrossRef]
- Ariel, P.D.; Hayat, T.; Asghar, S. The flow of an elastic-viscous fluid past a stretching sheet with partial slip. Acta Mech. 2006, 187, 29–35. [Google Scholar] [CrossRef]
- Abbas, Z.; Wang, Y.; Hayat, T.; Oberlack, M. Slip effects and heat transfer analysis in a viscous fluid over an oscillatory stretching surface. Int. J. Numer. Meth. Fluids 2009, 59, 443–458. [Google Scholar] [CrossRef]
- Fang, T.; Zhang, J.; Yao, S. Slip MHD viscous flow over a stretching sheet—An exact solution. Commun. Nonlinear Sci. Numer. Simulat. 2009, 14, 3731–3737. [Google Scholar] [CrossRef]
- Fang, T.; Yao, S.; Zhang, J.; Aziz, A. Viscous flow over a shrinking sheet with a second order slip flow model. Commun. Nonlinear Sci. Numer. Simulat. 2010, 15, 1831–1842. [Google Scholar] [CrossRef]
- Mehmood, A.; Ali, A. The effect of slip condition on unsteady MHD oscillatory flow of a viscous fluid in a planer channel. Rom. J. Phys. 2007, 52, 85–91. [Google Scholar]
- Murthy, J.V.R.; Kumar, M.P. Effect of slip parameter on the flow of viscous fluid past an impervious sphere. Int. J. Appl. Sci. Eng. 2014, 12, 203–223. [Google Scholar]
- Yacob, N.A.; Ishak, A. MHD flow of a micropolar fluid towards a vertical permeable plate with prescribed surface heat flux. Chem. Eng. Res. Des. 2011, 89, 2291–2297. [Google Scholar] [CrossRef]
- Merkin, J.H. On dual solutions occurring in mixed convection in a porous medium. J. Eng. Math. 1986, 20, 171–179. [Google Scholar] [CrossRef]
- Weidman, P.D.; Kubitschek, D.G.; Davis, A.M.J. The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int. J. Eng. Sci. 2006, 44, 730–737. [Google Scholar] [CrossRef]
- Paullet, J.; Weidman, P.D. Analysis of stagnation point flow towards a stretching sheet. Int. J. Nonlinear Mech. 2007, 42, 1084–1091. [Google Scholar] [CrossRef]
- Harris, S.D.; Ingham, D.B.; Pop, I. Mixed convection boundary layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transp. Porous Media 2009, 77, 267–285. [Google Scholar] [CrossRef]
- Postelnicu, A.; Pop, I. Falkner-Skan boundary layer flow of a power-law fluid past a stretching wedge. Appl. Math. Comp. 2011, 217, 4359–4368. [Google Scholar] [CrossRef]
Pr | Buoyancy Assisting Flow | Buoyancy Opposing Flow | ||||||
---|---|---|---|---|---|---|---|---|
Rex1/2Cf | NuxRex−1/2 | Rex1/2Cf | NuxRex−1/2 | |||||
Ishak et al. [6] | Present | Ishak et al. [6] | Present | Ishak et al. [6] | Present | Ishak et al. [6] | Present | |
0.72 | 0.3645 | 0.36449 | 1.0931 | 1.09310 | −0.3852 | −0.38518 | 1.0293 | 1.02925 |
6.8 | 0.1804 | 0.18041 | 3.2902 | 3.28957 | −0.1832 | −0.18323 | 3.2466 | 3.24608 |
10 | 0.15563 | 3.98240 | −0.15747 | 3.94370 | ||||
20 | 0.1175 | 0.11750 | 5.6230 | 5.62013 | −0.1183 | −0.11831 | 5.5923 | 5.58959 |
30 | 0.09889 | 6.87771 | −0.09938 | 6.85149 | ||||
40 | 0.0873 | 0.08724 | 7.9463 | 7.93830 | −0.0876 | −0.08758 | 7.9227 | 7.91489 |
50 | 0.07903 | 8.87292 | −0.07929 | 8.85153 | ||||
60 | 0.0729 | 0.07284 | 9.7327 | 9.71801 | −0.0731 | −0.07304 | 9.7126 | 9.69818 |
70 | 0.06794 | 10.49524 | −0.06810 | 10.47665 | ||||
80 | 0.0640 | 0.06394 | 11.2413 | 11.21874 | −0.0642 | −0.06407 | 11.2235 | 11.20117 |
90 | 0.06059 | 11.89831 | −0.06070 | 11.88161 | ||||
100 | 0.0578 | 0.05772 | 12.5726 | 12.54109 | −0.0579 | −0.05782 | 12.5564 | 12.52515 |
δ | λc |
---|---|
0 | −3.3504 |
0.3 | −3.8628 |
0.6 | −5.1519 |
δ | λ = 1 (Assisting Flow) | λ = −2 (Opposing Flow) | ||
---|---|---|---|---|
CfRex1/2 | Nux/Rex1/2 | CfRex1/2 | Nux/Rex1/2 | |
0 | 0.3349 | 1.2826 | −0.7244 (−1.9285) | 1.1814 (0.3191) |
0.3 | 0.2223 | 1.3064 | −0.5180 (−1.3669) | 1.1130 (0.2101) |
0.6 | 0.1659 | 1.3180 | −0.4086 (−1.0775) | 1.0713 (0.1596) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaimi, K.; Ishak, A. Stagnation-Point Flow towards a Stretching Vertical Sheet with Slip Effects. Mathematics 2016, 4, 27. https://doi.org/10.3390/math4020027
Zaimi K, Ishak A. Stagnation-Point Flow towards a Stretching Vertical Sheet with Slip Effects. Mathematics. 2016; 4(2):27. https://doi.org/10.3390/math4020027
Chicago/Turabian StyleZaimi, Khairy, and Anuar Ishak. 2016. "Stagnation-Point Flow towards a Stretching Vertical Sheet with Slip Effects" Mathematics 4, no. 2: 27. https://doi.org/10.3390/math4020027
APA StyleZaimi, K., & Ishak, A. (2016). Stagnation-Point Flow towards a Stretching Vertical Sheet with Slip Effects. Mathematics, 4(2), 27. https://doi.org/10.3390/math4020027