You are currently viewing a new version of our website. To view the old version click .
Mathematics
  • Article
  • Open Access

3 December 2015

Construction of Periodic Wavelet Frames Generated by the Walsh Polynomials

and
1
Department of Mathematics, Shri Jagdishprasad Jhabarmal Tibrewala University (JJTU), Jhunjhunu 333001, Rajasthan, India
2
Department of Mathematics, University of Kashmir, South Campus, Anantnag 192101, Jammu and Kashmir, India
*
Author to whom correspondence should be addressed.

Abstract

An explicit method for the construction of a tight wavelet frame generated by the Walsh polynomials with the help of extension principles was presented by Shah (Shah, 2013). In this article, we extend the notion of wavelet frames to periodic wavelet frames generated by the Walsh polynomials on R + by using extension principles. We first show that under some mild conditions, the periodization of any wavelet frame constructed by the unitary extension principle is still a periodic wavelet frame on R + . Then, we construct a pair of dual periodic wavelet frames generated by the Walsh polynomials on R + using the machinery of the mixed extension principle and Walsh–Fourier transforms.
MSC classifications:
42C40; 42C15; 42A38; 41A17; 22B99

1. Introduction

Wavelet frames have gained considerable popularity during the past decade, primarily due to their substantiated applications in diverse and widespread fields of engineering and science. One of the most useful methods to construct wavelet frames is through the concept of the unitary extension principle (UEP) introduced by Ron and Shen [1] and was subsequently extended by Daubechies et al. [2] in the form of the oblique extension principle (OEP). They give sufficient conditions for constructing tight wavelet frames for any refinable function ϕ ( x ) that generates a multiresolution analysis. The resulting wavelet frames are based on multiresolution analysis, and the generators are often called framelets. These methods of construction of wavelet frames are generalized from one dimension to higher dimensions, tight frames to dual frames, from a single scaling function to a scaling function vector. More importantly, the setup of tight wavelet frames provides great flexibility in approximating and representing periodic functions. Using periodization techniques, Zhang [3] constructed a dual pair of periodic wavelet frames for L 2 [ 0 , 1 ] under the assumption that the support of the wavelet function ψ in the frequency domain is contained in [ - π , - ε ] [ ε , π ] , ε > 0 . Later on, Zhang and Saito [4] constructed general periodic wavelet frames using extension principles. More precisely, they proved that under some decay conditions, the periodization of any wavelet frame constructed by the unitary extension principle is a periodic wavelet frame, and the periodization of any pair of dual wavelet frames constructed by the mixed extension principle is a pair of dual periodic wavelet frames. To mention only a few references on wavelet frames, the reader is referred to [5,6,7,8] and the many references therein.
The past decade has also witnessed a tremendous interest in the problem of constructing compactly-supported orthonormal scaling functions and wavelets with an arbitrary dilation factor p 2 , p N (see Debnath and Shah [9]). The motivation comes partly from signal processing and numerical applications, where such wavelets are useful in image compression and feature extraction, because of their small support and multifractal structure. Lang [10] constructed several examples of compactly-supported wavelets for the Cantor dyadic group by following the procedure of Daubechies [11] via scaling filters, and these wavelets turn out to be certain lacunary Walsh series on the real line. Kozyrev [12] found a compactly-supported p-adic wavelet basis for L 2 ( Q p ) , which is an analog of the Haar basis. The concept of multiresolution analysis on a positive half-line R + was recently introduced by Farkov [13]. He pointed out a method for constructing compactly-supported orthogonal p-wavelets related to the Walsh functions and proved necessary and sufficient conditions for scaling filters with p n many terms ( p , n 2 ) to generate a p-MRAin L 2 ( R + ) . Subsequently, dyadic wavelet frames on the positive half-line R + were constructed by Shah and Debnath in [14] using the machinery of Walsh–Fourier transforms. They have established necessary and sufficient conditions for the system ψ j , k ( x ) = 2 j / 2 ψ ( 2 j x k ) : j Z , k Z + to be a frame for L 2 ( R + ) . Wavelet packets and wavelet frame packets related to the Walsh polynomials were deeply investigated by Shah and Debnath in [14,15]. Recent results in this direction can also be found in [16,17] and the references therein.
Recently, Shah [18] established a unitary extension principle for constructing normalized tight wavelet frames generated by the Walsh polynomials on R + . Drawing inspiration from these wavelet frames, our aim is to extend the notion of wavelet frames to periodic wavelet frames on R + by using extension principles. More precisely, we prove that under some mild conditions, the periodization of any wavelet frame constructed by the unitary extension principle is a periodic wavelet frame on a positive half-line R + . Furthermore, based on the mixed extension principle and Walsh–Fourier transforms of the wavelet frames, an explicitly-constructed method for a pair of dual periodic wavelet frames generated by the Walsh polynomials is also given.
This paper is organized as follows. In Section 2, we introduce some notations and preliminaries related to the operations on positive half-line R + , including the definitions of the Walsh–Fourier transform and MRA-based wavelet frames related to the Walsh polynomials. Section 3 and Section 4 state and prove our main results about periodic wavelet frames generated by the Walsh polynomials.

2. Walsh–Fourier Analysis and MRA-Based Wavelet Frames

We start this section with certain results on Walsh–Fourier analysis. We present a brief review of generalized Walsh functions, Walsh–Fourier transforms and their various properties.
As usual, let R + = [ 0 , + ) , Z + = 0 , 1 , 2 , and N = Z + - 0 . Denote by [ x ] the integer part of x. Let p be a fixed natural number greater than one. For x R + and any positive integer j, we set:
x j = [ p j x ] ( mod p ) , x - j = [ p 1 - j x ] ( mod p )
where x j , x - j 0 , 1 , , p - 1 . Clearly, x j and x - j are the digits in the p-expansion of x:
x = j < 0 x - j p - j - 1 + j > 0 x j p - j
Moreover, the first sum on the right is always finite. Besides,
[ x ] = j < 0 x - j p - j - 1 , x = j > 0 x j p - j
where [ x ] and x are, respectively, the integral and fractional parts of x.
Consider on R + the addition defined as follows:
x y = j < 0 ζ j p - j - 1 + j > 0 ζ j p - j
with ζ j = x j + y j ( mod p ) , j Z 0 , where ζ j 0 , 1 , , p - 1 and x j , y j are calculated by Equation (1). Clearly, [ x y ] = [ x ] [ y ] and x y = x y . As usual, we write z = x y if z y = x , where ⊖ denotes subtraction modulo p in R + .
Let ε p = exp ( 2 π i / p ) ; we define a function r 0 ( x ) on [ 0 , 1 ) by:
r 0 ( x ) = 1 , if x [ 0 , 1 / p ) ε p , if x p - 1 , ( + 1 ) p - 1 , = 1 , 2 , , p - 1
The extension of the function r 0 to R + is given by the equality r 0 ( x + 1 ) = r 0 ( x ) , x R + . Then, the system of generalized Walsh functions w m ( x ) : m Z + on [ 0 , 1 ) is defined by:
w 0 ( x ) 1 and w m ( x ) = j = 0 k r 0 ( p j x ) μ j
where m = j = 0 k μ j p j , μ j 0 , 1 , , p - 1 , μ k 0 . They have many properties similar to those of the Haar functions and trigonometric series and form a complete orthogonal system. Further, by a Walsh polynomial, we shall mean a finite linear combination of Walsh functions.
For x , y R + , let:
χ ( x , y ) = exp 2 π i p j = 1 ( x j y - j + x - j y j )
where x j , y j are given by Equation (1).
We observe that:
χ x , m p n = χ x p n , m = w m x p n , x [ 0 , p n ) , m , n Z +
and:
χ ( x y , z ) = χ ( x , z ) χ ( y , z ) , χ ( x y , z ) = χ ( x , z ) χ ( y , z ) ¯
where x , y , z R + and x y is p-adic irrational. It is well known that systems χ ( α , . ) α = 0 and χ ( · , α ) α = 0 are orthonormal bases in L 2 [0,1] (see Golubov et al. [19]).
The Walsh–Fourier transform of a function f L 1 ( R + ) L 2 ( R + ) is defined by:
f ^ ( ξ ) = R + f ( x ) χ ( x , ξ ) ¯ d x
where χ ( x , ξ ) is given by Equation ( 2 ) . The Walsh–Fourier operator F : L 1 ( R + ) L 2 ( R + ) L 2 ( R + ) , F f = f ^ , extends uniquely to the whole space L 2 ( R + ) . The properties of the Walsh–Fourier transform are quite similar to those of the classic Fourier transform (see [19,20]). In particular, if f L 2 ( R + ) , then f ^ L 2 ( R + ) and:
f ^ L 2 ( R + ) = f L 2 ( R + )
Moreover, if f L 2 [ 0 , 1 ] , then we can define the Walsh–Fourier coefficients of f as:
f ^ ( n ) = 0 1 f ( x ) w n ( x ) ¯ d x
The series n Z + f ^ ( n ) w n ( x ) is called the Walsh–Fourier series of f. Therefore, from the standard L 2 -theory, we conclude that the Walsh–Fourier series of f converges to f in L 2 [ 0 , 1 ] , and Parseval’s identity holds:
f 2 2 = 0 1 | f ( x ) | 2 d x = n Z + f ^ ( n ) 2
By p-adic interval I R + of range n, we mean intervals of the form:
I = I n k = k p - n , ( k + 1 ) p - n , k Z +
The p-adic topology is generated by the collection of p-adic intervals, and each p-adic interval is both open and closed under the p-adic topology (see [19]). The family [ 0 , p - j ) : j Z forms a fundamental system of the p-adic topology on R + . Therefore, the generalized Walsh functions w j ( x ) , 0 j p n - 1 , assume constant values on each p-adic interval I n k and, hence, continuous on these intervals. Thus, w j ( x ) = 1 for x I n 0 .
Let E n ( R + ) be the space of p-adic entire functions of order n, that is the set of all functions that are constant on all p-adic intervals of range n. Thus, for every f E n ( R + ) , we have:
f ( x ) = k Z + f ( p - n k ) χ I n k ( x ) , x R +
Clearly, each Walsh function of order up to p n - 1 belongs to E n ( R + ) . The set E ( R + ) of p-adic entire functions on R + is the union of all of the spaces E n ( R + ) . It is clear that E ( R + ) is dense in L p ( R + ) , 1 p < , and each function in E ( R + ) is of compact support.
For j N 0 , let N j denote a full collection of coset representatives of Z + / p j Z + , i.e.,
N j = 0 , 1 , 2 , , p j - 1 , j 0
Then, Z + = n N j n + p j Z + , and for any distinct n 1 , n 2 N j , we have n 1 + p j Z + n 2 + p j Z + = . Thus, every non-negative integer k can uniquely be written as k = r p j + s , where r Z + , s N j . Further, a bounded function g : R + R + is said to be a radially-decreasing L 1 -majorant of f ( x ) L 2 ( R + ) if | f ( x ) | g ( x ) , g L 1 ( R + ) , and g ( 0 ) < .
For j Z and y R + , we define the dilation D j and translation operators T y as follows:
D j f ( x ) = p j / 2 f p j x and T y f ( x ) = f ( x y ) , f L 2 ( R + )
For given Ψ : = ψ 1 , , ψ L L 2 ( R + ) , define the wavelet system:
F ( Ψ ) = ψ , j , k ( x ) : = p j / 2 ψ ( p j x k ) , j Z , k Z + , = 1 , 2 , , L
The wavelet system F ( Ψ ) is called a wavelet frame, if there exist positive constants A and B, such that:
A f 2 2 = 1 L j Z k Z + f , ψ , j , k 2 B f 2 2
holds for every f L 2 ( R + ) , and we call the optimal constants A and B the lower frame bound and the upper frame bound, respectively. A tight wavelet frame refers to the case when A = B , and a Parseval wavelet frame refers to the case when A = B = 1 . On the other hand, if only the right-hand side of the above double inequality holds, then we say F ( Ψ ) is a Bessel sequence. If both F ( Ψ ) and F ( Ψ ˜ ) are wavelet frames and for any f L 2 ( R + ) , we have the reconstruction formula:
f = = 1 L j Z k Z + f , ψ ˜ , j , k ψ , j , k
in the L 2 -sense; then, we say that F ( Ψ ˜ ) is a dual wavelet frame of F ( Ψ ) (and vice versa), or we simply say that ( F ( Ψ ) , F ( Ψ ˜ ) ) is a pair of dual framelets.
Wavelets and tight wavelet frames are often derived from refinable functions and wavelet masks. A compactly supported function ϕ ( x ) L 2 ( R + ) is called a p-refinable function, if it satisfies an equation of the type:
ϕ ( x ) = p k = 0 p n - 1 c k ϕ ( p x k ) , x R +
where c k are complex coefficients. In the Fourier domain, the above refinement equation can be written as:
ϕ ^ ξ = h 0 ξ p ϕ ^ ξ p
where:
h 0 ( ξ ) = k = 0 p n - 1 c k w k ( ξ ) ¯
is a generalized Walsh polynomial, which is called the mask or symbol of the p-refinable function ϕ and is of course a p-adic step function. Observe that w k ( 0 ) = ϕ ^ ( 0 ) = 1 . By letting ξ = 0 in Equations ( 11 ) and ( 12 ) , we obtain k = 0 p n - 1 c k = 1 . Since ϕ is compactly supported and in fact supp ϕ [ 0 , p n - 1 ) , therefore ϕ ^ E n - 1 ( R + ) , and hence, as a result, ϕ ^ ( ξ ) = 1 for all ξ [ 0 , p 1 - n ) as ϕ ^ ( 0 ) = 1 .
Suppose Ψ = ψ 1 , , ψ L is a set of p-MRA functions derived from:
ψ ^ ξ = h ξ p ϕ ^ ξ p
where:
h ( ξ ) = k = 0 p n - 1 d k w k ( ξ ) ¯ , = 1 , , L
are the generalized Walsh polynomials, called the framelet symbols or wavelet masks. With h ( ξ ) , = 0 , 1 , , L , L p - 1 as the Walsh polynomials (wavelet masks), we formulate the matrix M ( ξ ) as:
M ( ξ ) = h 0 ( ξ ) h 0 ( ξ 1 / p ) h 0 ( ξ ( p - 1 ) / p ) h 1 ( ξ ) h 1 ( ξ 1 / p ) h 1 ( ξ ( p - 1 ) / p ) h L ( ξ ) h L ( ξ 1 / p ) h L ( ξ ( p - 1 ) / p )
The so-called unitary extension principle (UEP) provides a sufficient condition on Ψ = ψ 1 , , ψ L , such that the wavelet system F ( Ψ ) given by Equation (7) constitutes a tight frame for L 2 ( R + ) . It is well known that in order to apply the UEP to derive a wavelet tight frame from a given refinable function, the corresponding refinement mask must satisfy:
k = 0 p - 1 h 0 ξ k / p 2 1 , ξ R +
Recently, Shah [18] has given a general procedure for the construction of tight wavelet frames generated by the Walsh polynomials using unitary extension principles as:
Theorem 2.1: Let ϕ ( x ) be a compactly-supported refinable function, and ϕ ^ ( 0 ) = 1 . Then, the wavelet system F ( Ψ ) given by (7) constitutes a Parseval frame in L 2 ( R + ) provided the matrix M ( ξ ) as defined in Equation (15) satisfies:
M ( ξ ) M * ( ξ ) = I p , for a . e . ξ σ ( V 0 )
where σ ( V 0 ) : = ξ [ 0 , 1 ] : k Z + | ϕ ^ ξ k | 2 0 .

Acknowledgments

The authors express their gratitude to the anonymous referees for their careful reading and very useful comments, which improved the final version of this paper.

Author Contributions

There was equal contribution by the authors.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Ron, A.; Shen, Z. Affine systems in L2(ℝd): The analysis of the analysis operator. J. Funct. Anal. 1997, 148, 408–447. [Google Scholar] [CrossRef]
  2. Daubechies, I.; Han, B.; Ron, A.; Shen, Z. Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 2003, 14, 1–46. [Google Scholar] [CrossRef]
  3. Zhang, Z. Periodic wavelet frames. Adv. Comput. Math. 2005, 22, 165–180. [Google Scholar] [CrossRef]
  4. Zhang, Z.; Saito, N. Constructions of periodic wavelet frames using extension principles. Appl. Comput. Harmon. Anal. 2009, 27, 12–23. [Google Scholar] [CrossRef]
  5. Dong, B.; Ji, H.; Li, J.; Shen, Z.; Xu, Y. Wavelet frame based blind image inpainting. Appl. Comput. Harmon. Anal. 2012, 32, 268–279. [Google Scholar] [CrossRef]
  6. Farkov, Yu.A.; Lebedeva, E.A.; Skopina, M.A. Wavelet frames on Vilenkin groups and their approximation properties. Int. J. Wavelets Multiresolut. Inf. Process. 2015, 13. in press. [Google Scholar] [CrossRef]
  7. Goh, S.S.; Teo, K.M. Extension principles for tight wavelet frames of periodic functions. Appl. Comput. Harmon. Anal. 2008, 25, 168–186. [Google Scholar] [CrossRef]
  8. Li, Y.Z.; Jia, H.F. The construction of multivariate periodic wavelet bi-frames. J. Math. Anal. Appl. 2014, 412, 852–865. [Google Scholar] [CrossRef]
  9. Debnath, L.; Shah, F.A. Wavelet Transforms and Their Applications; Birkhäuser: New York, NY, USA, 2015. [Google Scholar]
  10. Lang, W.C. Orthogonal wavelets on the Cantor dyadic group. SIAM J. Math. Anal. 1996, 27, 305–312. [Google Scholar] [CrossRef]
  11. Daubechies, I. Ten Lectures on Wavelets; SIAM: Philadelphia, PA, USA, 1992. [Google Scholar]
  12. Kozyrev, S.V. Wavelet analysis as a p-adic spectral analysis. Izv. Akad. Nauk, Ser. Mat. 2002, 66, 149–158. [Google Scholar]
  13. Farkov, Yu.A. On wavelets related to Walsh series. J. Approx. Theory 2009, 161, 259–279. [Google Scholar] [CrossRef]
  14. Shah, F.A.; Debnath, L. Dyadic wavelet frames on a half-line using the Walsh–Fourier transform. Integr. Transf. Spec. Funct. 2011, 22, 477–486. [Google Scholar] [CrossRef]
  15. Shah, F.A. Construction of wavelet packets on p-adic field. Int. J. Wavelets Multiresolut. Inf. Process. 2009, 7, 553–565. [Google Scholar] [CrossRef]
  16. Shah, F.A.; Debnath, L. p-Wavelet frame packets on a half-line using the Walsh–Fourier transform. Integr. Transf. Spec. Funct. 2011, 22, 907–917. [Google Scholar] [CrossRef]
  17. Shah, F.A. p-Frame multiresolution analysis related to the Walsh functions. Int. J. Anal. Appl. 2015, 7, 1–15. [Google Scholar]
  18. Shah, F.A. Tight wavelet frames generated by the Walsh polynomials. Int. J. Wavelets Multiresolut. Inf. Process. 2013, 11, 1350042. [Google Scholar] [CrossRef]
  19. Golubov, B.I.; Efimov, A.V.; Skvortsov, V.A. Walsh Series and Transforms: Theory and Applications; Kluwer: Dordrecht, The Netherlands, 1991. [Google Scholar]
  20. Schipp, F.; Wade, W.R.; Simon, P. Walsh Series: An Introduction to Dyadic Harmonic Analysis; Adam Hilger: Bristol, UK; New York, NY, USA, 1990. [Google Scholar]

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.