Pulse Waves in the Viscoelastic Kelvin–Voigt Model: A Revisited Approach
Abstract
1. Introduction
2. The Kelvin–Voigt Model
2.1. General Solution
2.2. Step Pulse Solution
2.2.1. Asymptotic Solution for or
2.2.2. Asymptotic Solution for
2.2.3. Asymptotic Solution for
2.3. Delta Pulse Solution
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, 2nd ed.; World Scientific: Singapore, 2022. [Google Scholar]
- Hunter, S. Viscoelastic waves. In Progress in Solid Mechanics; Sneddon, I., Hill, R., Eds.; North-Holland: Amsterdam, The Netherlands, 1960; Chapter 1; pp. 3–60. [Google Scholar]
- Jeffreys, H. Damping in bodily seismic waves. Mon. Not. R. Astron. Soc. Geophys. Suppl. 1931, 2, 318–323. [Google Scholar] [CrossRef][Green Version]
- Lee, E.H.; Morrison, J.A. A comparison of the propagation of longitudinal waves in rods of viscoelastic materials. J. Polym. Sci. 1956, 19, 93–110. [Google Scholar] [CrossRef]
- Morrison, J.A. Wave propagation in rods of Voigt material and visco-elastic materials with three-parameter models. Q. Appl. Math. 1956, 14, 153–169. [Google Scholar] [CrossRef]
- Hanin, M. Propagation of an aperiodic wave in a compressible viscous medium. J. Math. Phys. 1957, 36, 234–249. [Google Scholar] [CrossRef]
- Collins, F. Plane compressional Voigt waves. Geophysics 1960, 25, 483–504. [Google Scholar] [CrossRef]
- Clark, G.B.; Rupert, G.B. Plane and spherical waves in a Voigt medium. J. Geophys. Res. 1966, 71, 2047–2053. [Google Scholar] [CrossRef]
- Clark, G.B.; Rupert, G.B.; Jamison, J.E. Series transform solutions for Voigt transients. Q. Appl. Math. 1968, 25, 349–361. [Google Scholar] [CrossRef]
- Jaramillo, E.E.; Colvin, J.D. Transient waves in a Voigt medium. J. Geophys. Res. 1970, 75, 5767–5774. [Google Scholar] [CrossRef]
- Mainardi, F. On the seismic pulse in a standard linear solid. Pure Appl. Geophys. 1972, 99, 72–84. [Google Scholar] [CrossRef]
- Buchen, P.; Mainardi, F. Asymptotic expansions for transient viscoelastic waves. J. Mécanique 1975, 14, 597–608. [Google Scholar]
- Mainardi, F.; Turchetti, G. Wave front expansions for transient viscoelastic waves. Mech. Res. Commun. 1975, 2, 107–111. [Google Scholar] [CrossRef]
- Dozio, M. On the propagation of signals in Kelvin-Voigt viscoelastic rods. Meccanica 1990, 25, 199–203. [Google Scholar] [CrossRef]
- Colombaro, I.; Giusti, A.; Mainardi, F. On transient waves in linear viscoelasticity. Wave Motion 2017, 74, 191–212. [Google Scholar] [CrossRef]
- Schiff, J.L. The Laplace Transform: Theory and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.; Marichev, O.I. Integrals and Series: Inverse Laplace Transforms; CRC Press: Boca Raton, FL, USA, 1986; Volume 5. [Google Scholar]
- Lebedev, N.N. Special Functions and Their Applications; Prentice-Hall Inc.: Saddle River, NJ, USA, 1965. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series: Elementary Functions; CRC Press: Boca Raton, FL, USA, 1986; Volume 1. [Google Scholar]
- Olver, F.W.J.; Olde Daalhuis, A.B.; Lozier, D.W.; Schneider, B.I.; Boisvert, R.F.; Clark, C.W.; Miller, B.R.; Saunders, B.V.; Cohl, H.S.; McClain, M.A. (Eds.) NIST Digital Library of Mathematical Functions. Version 1.2.5. Available online: https://dlmf.nist.gov/ (accessed on 11 January 2026).
- Oldham, K.B.; Myland, J.; Spanier, J. An Atlas of Functions: With Equator, the Atlas Function Calculator; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]




| Type | ||||
|---|---|---|---|---|
| I | >0 | <∞ | <∞ | >0 |
| II | >0 | =∞ | <∞ | =0 |
| III | =0 | <∞ | =∞ | >0 |
| IV | =0 | =∞ | =∞ | =0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
González-Santander, J.L.; Mainardi, F.; Mentrelli, A. Pulse Waves in the Viscoelastic Kelvin–Voigt Model: A Revisited Approach. Mathematics 2026, 14, 528. https://doi.org/10.3390/math14030528
González-Santander JL, Mainardi F, Mentrelli A. Pulse Waves in the Viscoelastic Kelvin–Voigt Model: A Revisited Approach. Mathematics. 2026; 14(3):528. https://doi.org/10.3390/math14030528
Chicago/Turabian StyleGonzález-Santander, Juan Luis, Francesco Mainardi, and Andrea Mentrelli. 2026. "Pulse Waves in the Viscoelastic Kelvin–Voigt Model: A Revisited Approach" Mathematics 14, no. 3: 528. https://doi.org/10.3390/math14030528
APA StyleGonzález-Santander, J. L., Mainardi, F., & Mentrelli, A. (2026). Pulse Waves in the Viscoelastic Kelvin–Voigt Model: A Revisited Approach. Mathematics, 14(3), 528. https://doi.org/10.3390/math14030528

