Optimal Policies in an Insurance Stackelberg Game: Demand Response and Premium Setting
Abstract
1. Introduction
2. Model Formulation
2.1. Financial and Insurance Markets
2.2. Diffusion Approximations and Wealth Dynamics
2.3. Stackelberg Game
3. Equilibrium Analysis
3.1. Policyholder’s Optimal Response
3.2. Insurer’s Equilibrium Strategy
4. Numerical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| Model Primitives and Parameters | |
| , | Expected return and volatility of the risky asset. |
| Intensity of the Poisson claim arrival process for a single policyholder. | |
| , | Mean and standard deviation of claim size . |
| n | Number of homogeneous policyholders. |
| Correlation coefficient between financial market () and insurance risk (). | |
| , | Policyholder’s income rate and consumption rate (exogenous). |
| T | Terminal time. |
| d | Policyholder’s target wealth level (survival threshold). |
| Insurer’s absolute risk aversion coefficient (CARA utility). | |
| Decision Variables | |
| Policyholder’s insurance coverage proportion (demand). | |
| Policyholder’s dollar amount invested in the risky asset. | |
| Insurer’s premium safety loading (markup). | |
| Insurer’s dollar amount invested in the risky asset. | |
| Derived Quantities and Thresholds | |
| Market price of risk. | |
| Lower premium threshold (can be negative). | |
| Upper premium threshold. | |
| Policyholder’s effective risk aversion parameter. | |
| D | Auxiliary variable, representing uninsured risk exposure. |
| , | Critical correlation thresholds defining market regimes. |
| , | Policyholder’s best response functions. |
| , | Insurer’s equilibrium strategies. |
| Stochastic Processes | |
| Policyholder’s wealth process. | |
| Insurer’s surplus process. | |
| , , | Standard Brownian motions (financial market, insurance risk, |
| independent component). | |
References
- Markowitz, H.M. Portfolio Selection. J. Financ. 1952, 7, 77–91. [Google Scholar]
- Merton, R.C. Lifetime portfolio selection under uncertainty: The continuous-time case. Rev. Econ. Stat. 1969, 51, 247–257. [Google Scholar] [CrossRef]
- Merton, R.C. Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 1971, 3, 373–413. [Google Scholar] [CrossRef]
- Yaari, M.E. On the consumer’s lifetime allocation process. Int. Econ. Rev. 1964, 5, 304–317. [Google Scholar] [CrossRef]
- Yaari, M.E. Uncertain lifetime, life insurance, and the theory of the consumer. Rev. Econ. Stud. 1965, 32, 137–150. [Google Scholar] [CrossRef]
- Samuelson, P.A. Lifetime portfolio selection by dynamic stochastic programming. Rev. Econ. Stat. 1969, 51, 239–246. [Google Scholar] [CrossRef]
- Briys, E. Insurance and consumption: The continuous-time case. J. Risk Insur. 1986, 53, 718–723. [Google Scholar] [CrossRef]
- Bayraktar, E.; Promislow, S.D.; Young, V.R. Purchasing term life insurance to reach a bequest goal while consuming. SIAM J. Financ. Math. 2016, 7, 183–214. [Google Scholar] [CrossRef]
- Li, Z.; Shen, Y.; Su, J. Optimal consumption and annuity equivalent wealth with mortality model uncertainty. Insur. Math. Econ. 2025, 120, 159–188. [Google Scholar] [CrossRef]
- Martin-Löf, A. Premium control in an insurance system, an approach using linear control theory. Scand. Actuar. J. 1983, 1, 1–27. [Google Scholar] [CrossRef]
- Christensen, B.J.; Parra-Alvarez, J.C.; Rafael Serrano, R. Optimal control of investment, premium and deductible for a non-life insurance company. Insur. Math. Econ. 2021, 101, 384–405. [Google Scholar] [CrossRef]
- Zhou, M.; Yuen, K.C.; Yin, C.C. Optimal investment and premium control for insurers with a nonlinear diffusion model. Acta Math. Appl. Sin. 2017, 33, 945–958. [Google Scholar] [CrossRef]
- Lin, X.; Li, Y.F. Optimal reinsurance and investment for a jump diffusion risk process under the CEV model. N. Am. Actuar. J. 2011, 15, 417–431. [Google Scholar] [CrossRef]
- Browne, S. Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin. Math. Oper. Res. 1995, 20, 937–958. [Google Scholar] [CrossRef]
- Browne, S. Beating a moving target: Optimal portfolio strategies for outperforming a stochastic benchmark. Financ. Stochastics 1999, 3, 275–294. [Google Scholar] [CrossRef]
- Højgaard, B. Optimal dynamic premium control in non-life insurance. maximizing dividend pay-outs. Scand. Actuar. J. 2002, 4, 225–245. [Google Scholar] [CrossRef]
- Liu, B.; Meng, H.; Zhou, M. Optimal investment and reinsurance policies for an insurer with ambiguity aversion. N. Am. J. Econ. Financ. 2021, 55, 101303. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, L.H.; Zhou, M. Portfolio selections for insurers with ambiguity aversion: Minimizing the probability of ruin. Appl. Econ. 2024, 56, 1423–1439. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, M.; Li, P. Optimal investment and premium control for insurers with ambiguity. Commun. Stat.-Theory Methods 2020, 49, 2110–2130. [Google Scholar] [CrossRef]
- Chen, L.; Shen, Y. On a new paradigm of optimal reinsurance: A stochastic Stackelberg differential game between an insurer and a reinsurer. ASTIN Bull. 2018, 48, 905–960. [Google Scholar] [CrossRef]
- Chen, L.; Shen, Y. Stochastic Stackelberg differential reinsurance games under time-inconsistent mean-variance framework. Insur. Math. Econ. 2019, 88, 120–137. [Google Scholar] [CrossRef]
- Cao, J.Y.; Li, D.C.; Young, V.R.; Zou, B. Stackelberg differential game for insurance under model ambiguity. Insur. Math. Econ. 2022, 106, 128–145. [Google Scholar] [CrossRef]
- Liang, X.; Young, V.R. Two Stackelberg games in life insurance: Mean-variance criterion. ASTIN Bull. 2024, 55, 178–203. [Google Scholar] [CrossRef]
- Ghossoub, M.; Zhu, M.B. Stackelberg Equilibria with Multiple Policyholders. Insur. Math. Econ. 2024, 116, 189–201. [Google Scholar] [CrossRef]
- Bai, Y.F.; Zhou, Z.B.; Xiao, H.L.; Gao, R.; Zhong, F.M. A stochastic Stackelberg differential reinsurance and investment game with delay in a defaultable market. Math. Methods Oper. Res. 2021, 94, 341–381. [Google Scholar] [CrossRef]
- Yuan, Y.; Liang, Z.B.; Han, X. Robust reinsurance contract with asymmetric information in a stochastic Stackelberg differential game. Scand. Actuar. J. 2022, 4, 328–355. [Google Scholar] [CrossRef]
- Dong, X.; Rong, X.M.; Zhao, H. Non-zero-sum reinsurance and investment game with non-trivial curved strategy structure under Ornstein–Uhlenbeck process. Scand. Actuar. J. 2023, 6, 565–597. [Google Scholar] [CrossRef]
- Cao, J.Y.; Li, D.C.; Young, V.R.; Zou, B. Co-opetition in reinsurance markets: When Pareto meets Stackelberg and Nash. Insur. Math. Econ. 2025, 125, 103133. [Google Scholar] [CrossRef]
- Jin, Y.; Jin, Z.; Wei, J. Insurance contract for electric vehicle charging stations: A Stackelberg game-theoretic approach. Insur. Math. Econ. 2025, 122, 61–81. [Google Scholar] [CrossRef]
- Zhou, M.; Li, S.; Liu, B. Optimal insurance pricing and demands in a stochastic Stackelberg differential game. Int. Rev. Financ. 2026, 26, e70057. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chen, C.; Liu, B.; He, F.; Bahtbek, D. Optimal Policies in an Insurance Stackelberg Game: Demand Response and Premium Setting. Mathematics 2026, 14, 370. https://doi.org/10.3390/math14020370
Chen C, Liu B, He F, Bahtbek D. Optimal Policies in an Insurance Stackelberg Game: Demand Response and Premium Setting. Mathematics. 2026; 14(2):370. https://doi.org/10.3390/math14020370
Chicago/Turabian StyleChen, Cuixia, Bing Liu, Fumei He, and Darhan Bahtbek. 2026. "Optimal Policies in an Insurance Stackelberg Game: Demand Response and Premium Setting" Mathematics 14, no. 2: 370. https://doi.org/10.3390/math14020370
APA StyleChen, C., Liu, B., He, F., & Bahtbek, D. (2026). Optimal Policies in an Insurance Stackelberg Game: Demand Response and Premium Setting. Mathematics, 14(2), 370. https://doi.org/10.3390/math14020370
