Low-Complexity Numerical Approach for the Diffusion Equation with Variable Diffusion Coefficient
Abstract
1. Introduction
2. Preliminaries
2.1. Diffusion Equation
2.2. Finite Difference Approximations of Derivatives
2.3. Finite Difference Approximations of Partial Derivatives: Crank–Nicolson Method
2.4. Multivariate Newton–Raphson Method
3. Problem Statement
3.1. Standard Approach
3.2. Alternative Approach
4. Application Example
4.1. Implementation of the Standard Approach
| Algorithm 1 Algorithm for solving (29) with the standard approach |
|
4.2. Implementation of the Alternative Approach
4.3. Computational Complexity
- Jacobian Matrix assembly: for each iteration of the Newton–Raphson method, constructing the tridiagonal Jacobian coefficient matrix using (32) involves operations.
- For each iteration of the Newton–Raphson method, solving requires multiplications using Thomas’ algorithm for tridiagonal matrices.
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cunningham, R.E.; Williams, R.J.J. Diffusion in Gases and Porous Solids; Plenum Press: New York, NY, USA, 1980. [Google Scholar]
- Reyes, S.C.; Sinfelt, J.H.; DeMartin, G.J. Diffusion in Porous Solids: The Parallel Contribution of Gas and Surface Diffusion Processes in Pores Extending from the Mesoporous Region into the Microporous Region. J. Phys. Chem. B 2000, 104, 5750–5761. [Google Scholar] [CrossRef]
- Balogh, Z.; Schmitz, G. Diffusion in Metals and Alloys. In Physical Metallurgy, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 387–559. [Google Scholar] [CrossRef]
- Nagasawa, M. Schrodinger Equations and Diffusion Theory; Birkhauser Verlag: Basel, Switzerland, 1993. [Google Scholar] [CrossRef]
- Dynkin, E.B. Diffusions, Superdiffusions and Partial Differential Equations; American Mathematical Society: Providence, RI, USA, 2002. [Google Scholar]
- Möller, M.N.; Cuevasanta, E.; Orrico, F.; Lopez, A.C.; Thomson, L.; Denicola, A. Diffusion and Transport of Reactive Species Across Cell Membranes. Adv. Exp. Med. Biol. 2019, 1127, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, A.F.W. Atomic diffusion in semiconductors. Rep. Prog. Phys. 1978, 41, 1665. [Google Scholar] [CrossRef]
- Giddings, J. ‘Eddy’ Diffusion in Chromatography. Nature 1959, 184, 357–358. [Google Scholar] [CrossRef]
- Karaiskakis, G.; Gavril, D. Determination of diffusion coefficients by gas chromatography. J. Chromatogr. A 2004, 1037, 147–189. [Google Scholar] [CrossRef]
- Abbasbandy, S. Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by means of the homotopy analysis method. Chem. Eng. J. 2008, 136, 144–150. [Google Scholar] [CrossRef]
- Potter, M.E.; O’Malley, A.J.; Chapman, S.; Kezina, J.; Newland, S.H.; Silverwood, I.P.; Mukhopadhyay, S.; Carravetta, M.; Mezza, T.M.; Parker, S.F.; et al. Understanding the Role of Molecular Diffusion and Catalytic Selectivity in Liquid-Phase Beckmann Rearrangement. ACS Catal. 2017, 7, 2926–2934. [Google Scholar] [CrossRef]
- Liu, Z.H.; Zhang, D.Q.; Sing, S.L.; Chua, C.K.; Loh, L.E. Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy. Mater. Charact. 2014, 94, 116–125. [Google Scholar] [CrossRef]
- Hussain, A.; Uddin, M.; Haq, S.; Jan, H.U. Numerical Solution of Heat Equation in Polar Cylindrical Coordinates by the Meshless Method of Lines. J. Math. 2021, 2021, 8862139. [Google Scholar] [CrossRef]
- Munier, A.; Burgan, J.R.; Gutierrez, J.; Fijalkow, E.; Feix, M.R. Group Transformations and the Nonlinear Heat Diffusion Equation. SIAM J. Appl. Math. 1981, 40, 191–207. [Google Scholar] [CrossRef]
- Paripour, M.; Babolian, E.; Saeidian, J. Analytic solutions to diffusion equations. Math. Comput. Model. 2010, 51, 649–657. [Google Scholar] [CrossRef]
- Suárez-Carreño, F.; Rosales-Romero, L. Convergency and Stability of Explicit and Implicit Schemes in the Simulation of the Heat Equation. Appl. Sci. 2021, 11, 4468. [Google Scholar] [CrossRef]
- Singh, S.; Jain, P.K.; Rizwan-uddin. Analytical solution to transient heat conduction in polar coordinates with multiple layers in radial direction. Int. J. Therm. Sci. 2007, 47, 261–273. [Google Scholar] [CrossRef]
- Santos, L.P.; Junior, J.O.M.; Campos, M.D.; Romao, E.C. A study about one-dimensional steady state heat transfer in cylindrical and spherical coordinates. Appl. Math. Sci. 2013, 7, 6227–6233. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion; Oxford University Press: Oxford, UK, 1979. [Google Scholar]
- Ivanova, N.M. Exact solutions of diffusion–convection equations. Dyn. Partial Differ. Equ. 2008, 5, 139–171. [Google Scholar] [CrossRef]
- Hayek, M. An exact solution for a nonlinear diffusion equation in a radially symmetric inhomogeneous medium. Comput. Math. Appl. 2014, 68, 1751–1757. [Google Scholar] [CrossRef]
- Chang, M.J.; Chow, L.C.; Chang, W.S. Improved alternating-direction implicit method for solving transient three-dimensional heat diffusion problems. Numer. Heat Transf. Part B Fundam. 1991, 19, 69–84. [Google Scholar] [CrossRef][Green Version]
- Thibault, J. Comparison of nine three-dimensional numerical methods for the solution of the heat diffusion equation. Numer. Heat Transf. 1985, 8, 281–298. [Google Scholar] [CrossRef]
- Crank, J.; Nicolson, P. A Practical Method for Numerical Evaluation of Solutions of Partial Differential Equations of the Heat Conduction Type. Adv. Comput. Math. 1996, 6, 207–226. [Google Scholar] [CrossRef]
- Liu, Y.; Bi, H. Stability analysis and error estimation of variable coefficient convection-diffusion equation: Generalized numerical fluxes. J. Phys. Conf. Ser. 2021, 1903, 012016. [Google Scholar] [CrossRef]
- Baranovskii, E.S.; Brizitskii, R.V.; Saritskaia, Z.Y. Optimal control problems for the reaction-diffusion-convection equation with variable coefficients. Nonlinear Anal. Real World Appl. 2024, 75, 103979. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z. An efficient localized meshless technique for approximating nonlinear sinh-Gordon equation arising in surface theory. Eng. Anal. Bound. Elem. 2021, 130, 268–285. [Google Scholar] [CrossRef]
- Joy, D.; Kumar, S.D. Computational techniques for singularly perturbed reaction-diffusion delay differential equations: A second-order approach. J. Math. Comput. Sci. 2024, 35, 304–318. [Google Scholar] [CrossRef]
- Balsa-Canto, E.; Vázquez, C.; López-Núñez, A. Numerical methods for a nonlinear reaction–diffusion system modelling a batch culture of biofilm. Appl. Math. Model. 2017, 41, 164–179. [Google Scholar] [CrossRef][Green Version]
- Papanicolaou, A.N.; Diplas, P. Numerical solution of a non-linear model for self-weight solids settlement. Appl. Math. Model. 1999, 23, 345–362. [Google Scholar] [CrossRef]
- Apostol, T.M. Mathematical Analysis; Addison-Wesleyt: Boston, MA, USA, 1974. [Google Scholar]
- Smith, G.D. Numerical Solution of Partial Differential Equations: Finite Difference Methods; Oxford University Press: Oxford, UK, 1978; ISBN 0-19-859625-1. [Google Scholar]
- Sharma, T.C.; Pathak, S.P.; Trivedi, G. Comparative Study of Crank-Nicolson and Modified Crank-Nicolson Numerical Methods to Solve Linear Partial Differential Equations. Indian J. Sci. Technol. 2024, 17, 924–931. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Ren, X.; Chang, X. The Crank-Nicolson Mixed Finite Element Scheme and Its Reduced-Order Extrapolation Model for the Fourth-Order Nonlinear Diffusion Equations with Temporal Fractional Derivative. Fractal Fract. 2025, 9, 789. [Google Scholar] [CrossRef]
- Dahlquist, G.; Bjorck, A. Numerical Methods; Dover: Kent, UK, 2003; ISBN 0-486-42807-9. [Google Scholar]
- Burger, J.; Machbub, C. Comparison of numerical solutions of a one-dimensional non-linear heat equation. Commun. Appl. Numer. Methods 1991, 7, 233–240. [Google Scholar] [CrossRef]
- Albasiny, E.L. On the numerical solution of a cylindrical heat-conduction problem. Q. J. Mech. Appl. Math. 1960, 13, 374–384. [Google Scholar] [CrossRef]
- Peterson, N.L. Self-diffusion in pure metals. J. Nucl. Mater. 1978, 69–70, 3–37. [Google Scholar] [CrossRef]
- François, D.; Pineau, A.; Zaoui, A. Mechanical Behaviour of Materials; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]


| Method | Standard Approach | Alternative Approach |
|---|---|---|
| Number of operations per time step | ||
| Temporal accuracy | ||
| Spatial accuracy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zárraga-Rodríguez, M.; Fuentes, P.; Insausti, X. Low-Complexity Numerical Approach for the Diffusion Equation with Variable Diffusion Coefficient. Mathematics 2026, 14, 285. https://doi.org/10.3390/math14020285
Zárraga-Rodríguez M, Fuentes P, Insausti X. Low-Complexity Numerical Approach for the Diffusion Equation with Variable Diffusion Coefficient. Mathematics. 2026; 14(2):285. https://doi.org/10.3390/math14020285
Chicago/Turabian StyleZárraga-Rodríguez, Marta, Patricio Fuentes, and Xabier Insausti. 2026. "Low-Complexity Numerical Approach for the Diffusion Equation with Variable Diffusion Coefficient" Mathematics 14, no. 2: 285. https://doi.org/10.3390/math14020285
APA StyleZárraga-Rodríguez, M., Fuentes, P., & Insausti, X. (2026). Low-Complexity Numerical Approach for the Diffusion Equation with Variable Diffusion Coefficient. Mathematics, 14(2), 285. https://doi.org/10.3390/math14020285

