Investigation into Thermoelastic Issues Arising from Temperature Shock in Spacecraft Solar Panels
Abstract
1. Introduction
2. Problem Statement
3. Mathematical Model
3.1. For the Region ux ≡ 0
3.2. For the Region ux ≠ 0
4. Results and Discussion
4.1. For the Region ux ≡ 0
- -
- a uniform and steady heat flow Q (Figure 1);
- -
- negligible heat transfer through the plate’s lateral faces.
4.2. For the Region ux ≠ 0
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Danilovskaya, V.I. Some Problems on Thermal Stresses in the Theory of Elasticity and Plasticity. Ph.D. Thesis, Moscow State University named after M.V. Lomonosov, Moscow, Russia, 1949. [Google Scholar]
- Danilovskaya, V.I. Thermal Stress in the Elastic Semi-Space Due to a Sudden Heating of the Surface. Prikl. Math. Mekh. 1950, 14, 316–318. [Google Scholar]
- Danilovskaya, V.I. On a dynamical problem of thermoelasticity. Prikl. Mat. Mekh. 1952, 16, 341–344. [Google Scholar]
- Jordan, P.M.; Puri, P. Revisiting the Danilovskaya Problem. J. Therm. Stress. 2006, 29, 865–878. [Google Scholar] [CrossRef]
- Gawinecki, J.A.; Rafa, J.; Łazuka, J. The solution to the Lamb–Danilovskaya problem and analysis of waves in a thermo-viscoelastic medium with memory. Wave Motion 2021, 106, 102769. [Google Scholar] [CrossRef]
- Biot, M.A. Thermoelasticity and Irreversible Thermodynamics. J. Appl. Phys. 1956, 27, 240–253. [Google Scholar] [CrossRef]
- Todhunter, I. History of the Theory of Elasticity and of Strength of Materials, from Galilei to the Present Time; Pearson, K., Ed.; Cambridge University Press: London, UK, 2014. [Google Scholar]
- Timoshenko, S.P.; Woinowsky-Krieger, S. Theory of Plates and Shells, 2nd ed.; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Kartashov, E.M. New model representations of dynamic thermoviscoelasticity in the problem of heat shock. J. Eng. Phys. Thermophys. 2012, 85, 1102–1113. [Google Scholar] [CrossRef]
- Sedelnikov, A.V.; Orlov, D.I.; Serdakova, V.V.; Nikolaeva, A.S. Investigation of the stress-strain state of a rectangular plate after a temperature shock. Mathematics 2023, 11, 638. [Google Scholar] [CrossRef]
- Ailawalia, P.; Kumar, L. One-dimensional thermal shock problem for a semi-infinite hygrothermoelastic rod. Int. J. Appl. Mech. Eng. 2023, 28, 1–12. [Google Scholar] [CrossRef]
- Xiong, Q.; Tian, X. Response of a Semi-Infinite Microstretch Homogeneous Isotropic Body Under Thermal Shock. J. Appl. Mech. 2011, 78, 044503. [Google Scholar] [CrossRef]
- Campo, A. The role of thermal effusivity on the incipient growth of the surface temperature in a semi-infinite region absorbing heat flux at the surface. Therm. Sci. Eng. 2023, 6, 2487. [Google Scholar] [CrossRef]
- Hetnarski, R.B. Coupled one-dimensional thermal shock problem for small times. Arch. Mech. Stosow. 1961, 13, 295–306. [Google Scholar]
- Burlayenko, V.N.; Altenbach, H.; Sadowski, T.; Dimitrova, S. Computational simulations of thermal shock cracking by the virtual crack closure technique in a functionally graded plate. Comput. Mater. Sci. 2015, 116, 38. [Google Scholar] [CrossRef]
- Sedelnikov, A.; Glushkov, S.; Skvortsov, Y.; Evtushenko, M.; Nikolaeva, A. Computer Simulation of the Natural Vibrations of a Rigidly Fixed Plate Considering Temperature Shock. Computation 2025, 13, 49. [Google Scholar] [CrossRef]
- Delouei, A.A.; Emamian, A.; Ghorbani, S.; Khorrami, A.; Jafarian, K.; Sajjadi, H.; Atashafrooz, M.; Jing, D.; Tarokh, A. A Review on Analytical Heat Transfer in Functionally Graded Materials, Part II: Non-Fourier Heat Conduction. J. Therm. Sci. 2025, 34, 1387–1407. [Google Scholar] [CrossRef]
- Li, J.; Qian, H.; Lu, C. Thermo-Mechanical Analysis for Composite Cylindrical Shells with Temperature-Dependent Material Properties Under Combined Thermal and Mechanical Loading. Materials 2025, 18, 1391. [Google Scholar] [CrossRef]
- Tan, C.-H.; Jiang, W.-W.; Zhou, Y.-T.; Zhang, S.-Q.; Yang, K.; Gao, X.-W. A new method for simultaneous identification of thermal-mechanical loading and thermophysical properties in dynamic coupled thermoelasticity problems based on Levenberg-Marquardt method. Int. Commun. Heat Mass Transf. 2025, 169, 109869. [Google Scholar] [CrossRef]
- Al-Lehaibi, E.A.N. Fractional Heat Conduction with Variable Thermal Conductivity of Infinite Annular Cylinder under Thermoelasticity Theorem of Moore–Gibson–Thompson. Fractal Fract. 2025, 9, 272. [Google Scholar] [CrossRef]
- Kumar, P.; Prasad, R. Theorems in the generalized thermoelasticity based on the thermomass motion in the modified Green–Lindsay theory. Acta Mech. 2025, 1–17. [Google Scholar] [CrossRef]
- Chistyakov, A.E.; Kuznetsova, I.Y. A Finite Difference Scheme with Improved Boundary Approximation for the Heat Conduction Equation with Third-Type Boundary Conditions. Comput. Math. Inf. Technol. 2025, 9, 7–31. [Google Scholar] [CrossRef]
- Kupradze, V.D.; Tegelia, T.G.; Bashelejshvili, M.O.; Burchuladze, T.V. Threedimensional Problems of Mathematical Theory of Elasticity and Theroelasticity; Nauka: Moskow, Russia, 1976; p. 664. [Google Scholar]
- Revenko, V.P. Construction of three-dimensional solutions of equations of the theory of thermoelasticity in the cylindrical coordinate system. Mater. Sci. 2025, 60, 665–672. [Google Scholar] [CrossRef]
- Sedelinkov, A.; Nikolaeva, A.; Serdakova, V.; Khnyryova, E. Technologies for Increasing the Control Efficiency of Small Spacecraft with Solar Panels by Taking into Account Temperature Shock. Technologies 2024, 12, 207. [Google Scholar] [CrossRef]
- Johnston, J.D.; Thornton, E.A. Thermally Induced Attitude Dynamics of a Spacecraft with a Flexible Appendage. J. Guid. Control Dyn. 2008, 21, 581–587. [Google Scholar] [CrossRef]
- Gadalla, M.; Ghommem, M.; Bourantas, G.; Miller, K. Modeling and Thermal Analysis of a Moving Spacecraft Subject to Solar Radiation Effect. Processes 2019, 7, 807. [Google Scholar] [CrossRef]
- Liu, F.; Zhu, D.; Li, S.; Li, H.; Guo, Y.N.; Qi, N.; Wang, B.; Feng, K.P.; Sun, J. Research progress on dynamics modeling and high-precision form-attitude cooperative control of ultra-large-scale flexible spacecraft. Sci. Sin. Phys. Mech. Astron. 2025, 55, 224502. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, H.; Zhou, P.; Fan, W. Dynamic modeling and high-precision attitude slew maneuver with extended disturbance observer for flexible spacecraft. Nonlinear Dyn. 2025, 113, 24849–24866. [Google Scholar] [CrossRef]
- Sedelnikov, A.V.; Orlov, D.I.; Bratkova, M.E.; Khnyryova, E.S. Estimating the Inertia Tensor Components of an Asymmetrical Spacecraft When Removing It from the Operational Orbit at the End of Its Active Life. Sensors 2023, 23, 9615. [Google Scholar] [CrossRef]
- Nikolaeva, A.S.; Evtushenko, M.A.; Manukyan, L.A. Investigation of the accuracy of an approximate solution of the initial boundary value problem of thermal conductivity with boundary conditions of the third kind. Int. J. Math. Model. Numer. Optim. 2025, 15, 52–63. [Google Scholar] [CrossRef]
- Belousova, D.A.; Serdakova, V.V. Modeling the temperature shock of elastic elements using a one-dimensional model of thermal conductivity. Model. Simul. Manuf. 2025, 51–59. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, Y.; Luo, F.; Tian, H.; Xie, W. Thermal Vibrations and Buckling Analysis of Bidirectional Functionally Graded Beams Under Axial and Transverse Temperature Gradients. Acta Mech. Solida Sin. 2025, 1–14. [Google Scholar] [CrossRef]
- Liu, Y.; Han, Y.; Li, H.; Gu, S.; Qiu, J.; Li, T. Computing over Space: Status, Challenges, and Opportunities. Engineering 2025, 54, 20–25. [Google Scholar] [CrossRef]
- Jiang, L.; Yang, G.; Li, H.; Hu, W.; Xu, P. Reliability research and design of on-board computers of micro-satellite. J. Syst. Eng. Electron. 2009, 31, 238–240. [Google Scholar]
- Gao, Y.; Chien, S. Review on space robotics: Toward top-level science through space exploration. Sci. Robot. 2017, 2, eaan5074. [Google Scholar] [CrossRef]
- Khaldjigitov, A.; Tilovov, O.; Djumayozov, U. Numerical solution of the plane problem of thermal elasticity in stresses. Probl. Comput. Appl. Math. 2025, 6, 94–103. [Google Scholar]
- Chen, T.; Zhou, Z.; Hu, W.; Hao, R.; Zhao, Y.; He, J. Global modes dynamic analysis and experimental verification for spacecraft solar panels with adjustable-stiffness magnetic joints. J. Phys. Conf. Ser. 2025, 3109, 012003. [Google Scholar] [CrossRef]
- Sekkal, M.; Tebboune, W.; Taleb, O.; Bouiadjra, R.B.; Benyoucef, S.; Tounsi, A. Free vibration, Buckling and Bending investigation of bidirectional FG curved sandwich beams. J. Comput. Appl. Mech. 2025, 56, 641–662. [Google Scholar] [CrossRef]
- Samarsky, A.A.; Vabishchevich, V.P. Computational Heat Transfer; Editorial USSR: Moskow, Russia, 2003; p. 784. [Google Scholar]
- Sedelnikov, A.V.; Evtushenko, M.A.; Marshalkina, A.S. Analytical solution for thermoelastic response of a thin plate subjected to temperature shock. Int. Commun. Heat Mass Transfer 2025, 169, 109737. [Google Scholar] [CrossRef]
- Lurie, S.; Volkov-Bogorodskii, D.B.; Belov, P.A. Analytical Solution of Stationary Coupled Thermoelasticity Problem for Inhomogeneous Structures. Mathematics 2021, 10, 90. [Google Scholar] [CrossRef]
- Kothule, C.B.; Holambe, T.L.; Khavale, S.; Sontakke, B.R. Fractional Order Three-Dimensional Generalized Boundary Value Problem for Rectangular Plate Moving with Heat Source. Commun. Appl. Nonlinear Anal. 2025, 32, 3528–3544. [Google Scholar]
- Levina, L.V.; Pen’kov, V.B.; Lavrentieva, M.A. Current state and prospects of research in thermoelasticity. Contemp. Math. Fundam. Dir. 2025, 71, 240–252. [Google Scholar] [CrossRef]
- Ismail, M.F.; Ahmed, H.; Safwat, S.; Ramadan, M.E.; Abdalla, N.; Soliman, M. Analytical wave solutions in thermoelastic media with temperature-dependent properties via IMETF method. Sci. Rep. 2025, 15, 32553. [Google Scholar] [CrossRef] [PubMed]
- Bayandin, Y.V. Verification and validation of methods of numerical simulation of thermoelastic deformation of a solid. Perm Sci. Cent. J. 2025, 6–17. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sedelnikov, A.V.; Marshalkina, A.S. Investigation into Thermoelastic Issues Arising from Temperature Shock in Spacecraft Solar Panels. Mathematics 2026, 14, 217. https://doi.org/10.3390/math14020217
Sedelnikov AV, Marshalkina AS. Investigation into Thermoelastic Issues Arising from Temperature Shock in Spacecraft Solar Panels. Mathematics. 2026; 14(2):217. https://doi.org/10.3390/math14020217
Chicago/Turabian StyleSedelnikov, Andrey V., and Alexandra S. Marshalkina. 2026. "Investigation into Thermoelastic Issues Arising from Temperature Shock in Spacecraft Solar Panels" Mathematics 14, no. 2: 217. https://doi.org/10.3390/math14020217
APA StyleSedelnikov, A. V., & Marshalkina, A. S. (2026). Investigation into Thermoelastic Issues Arising from Temperature Shock in Spacecraft Solar Panels. Mathematics, 14(2), 217. https://doi.org/10.3390/math14020217

