The Weighted k-Search Problem
Abstract
1. Introduction
1.1. Competitive Analysis
1.2. Related Work
2. Problem Formulation
- The player has to convert the groups in consecutive order.
- Converting more than one group at the same time is not allowed.
- Each group has to be converted at once.
- All groups have to be converted until the end of the investment horizon at time T.
3. Online Algorithm lRPP
- Step 1: Calculate c with the following:
- Step 2: Calculate the l reservation prices with the following:
- Step 3: Repeat from : convert with the following:withNote that defines which group can be traded at time t, since the group must be converted following the given sequence.
3.1. Min-Search
3.2. Max-Search
3.3. Additional Insights
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lorenz, J.; Panagiotou, K.; Steger, A. Optimal Algorithms for k-Search with Application in Option Pricing. Algorithmica 2009, 55, 311–328. [Google Scholar] [CrossRef]
- Borodin, A.; El-Yaniv, R. Online Computation and Competitive Analysis; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Sleator, D.D.; Tarjan, R.E. Amortized Efficiency of List Update and Paging Rules. Commun. ACM 1985, 28, 202–208. [Google Scholar] [CrossRef]
- Mohr, E.; Ahmad, I.; Schmidt, G. Online algorithms for conversion problems: A survey. Surv. Oper. Res. Manag. Sci. 2014, 19, 87–204. [Google Scholar] [CrossRef]
- El-Yaniv, R.; Fiat, A.; Karp, R.M.; Turpin, G. Competitive analysis of financial games. In Proceedings of the IEEE Symposium on Foundations of Computer Science, Pittsburgh, PA, USA, 24–27 October 1992; pp. 327–333. [Google Scholar]
- El-Yaniv, R. Competitive solutions for online financial problems. ACM Comput. Surv. 1998, 30, 28–69. [Google Scholar] [CrossRef]
- Dannoura, E.; Sakurai, K. An improvement on El-Yaniv-Fiat-Karp-Turpin’s money-making bi-directional trading strategy. Inf. Process. Lett. 1998, 66, 27–33. [Google Scholar] [CrossRef]
- El-Yaniv, R.; Fiat, A.; Karp, R.M.; Turpin, G. Optimal Search and One-Way Trading Online Algorithms. Algorithmica 2001, 30, 101–139. [Google Scholar] [CrossRef]
- Schwarz, M. Kompetitive Algorithmen für den Börsenhandel. Ph.D. Thesis, Saarland University, Saarbrücken, Germany, 3 June 2019. [Google Scholar]
- Schwarz, M. Lower and upper bounds for the discrete bi-directional pre-emptive conversion problem with a constant price interval. Algorithms 2020, 13, 42. [Google Scholar] [CrossRef]
- Fung, S.P.Y. Optimal Online Two-Way Trading with Bounded Number of Transactions. Algorithmica 2019, 81, 4238–4257. [Google Scholar] [CrossRef]
- Chen, G.H.; Kao, M.Y.; Lyuu, Y.D.; Wong, H.K. Optimal buy-and-hold strategies for financial markets with bounded daily returns. In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, Atlanta, GA, USA, 1–4 May 1999; pp. 119–128. [Google Scholar]
- Zhang, W.; Xu, Y.; Zheng, F.; Dong, Y. Optimal algorithms for online time series search and one-way trading with interrelated prices. J. Comb. Optim. 2012, 23, 159–166. [Google Scholar] [CrossRef]
- Schroeder, P.; Kacem, I. New algorithms for online time series search with interrelated prices. In Proceedings of the 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), Paris, France, 23–26 April 2019; pp. 1682–1687. [Google Scholar]
- Schroeder, P.; Kacem, I.; Schmidt, G. Optimal online algorithms for the portfolio selection problem, bi-directional trading and -search with interrelated prices. RAIRO Oper. Res. 2019, 53, 559–576. [Google Scholar] [CrossRef]
- Damaschke, P.; Ha, P.H.; Tsigas, P. Online Search with Time-Varying Price Bounds. Algorithmica 2009, 55, 619–642. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Y.; Zheng, F.; Liu, M. Online algorithms for the general k-search problem. Inf. Process. Lett. 2011, 111, 678–682. [Google Scholar] [CrossRef]
- Schmidt, G. Competitive analysis of bi-directional non-preemptive conversion. J. Comb. Optim. 2017, 34, 1096–1113. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, E.; Zheng, F. Online (j, k)-search problem and its competitive analysis. Theor. Comput. Sci. 2015, 593, 139–145. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Cheng, Y.; Zheng, S. An online trading problem with an increasing number of available products. J. Comb. Optim. 2022, 44, 518–531. [Google Scholar] [CrossRef]
- Zhao, J.; Cheng, Y.; Eube, J.; Liu, H. Online multiple one way non-preemptive time series search with interrelated prices. J. Comb. Optim. 2024, 49, 12. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, E.; Zheng, F. Online two stage k-search problem and its competitive analysis. Int. J. Found. Comput. Sci. 2016, 27, 653–663. [Google Scholar] [CrossRef]
- Lechowicz, A.; Christianson, N.; Zuo, J.; Bashir, N.; Hajiesmaili, M.; Wierman, A.; Shenoy, P. The Online Pause and Resume Problem: Optimal Algorithms and an Application to Carbon-Aware Load Shifting. Proc. Acm Meas. Anal. Comput. Syst. 2023, 7, 1–32. [Google Scholar] [CrossRef]
- Ahmad, I.; Abdulwahab, A.A.; Mohammed, A.A.; Muhammad, K.N. Competitive risk aware algorithm for k-min search problem. Intell. Autom. Soft Comput. 2022, 31, 1131. [Google Scholar] [CrossRef]
- Clemente, J.B.; Adorna, H.N.; Fernandez, P.L., Jr. Online algorithms with advice for the k-search problem. Philipp. J. Sci. 2022, 151, 1321–1331. [Google Scholar] [CrossRef]
- Lee, R.; Sun, B.; Hajiesmaili, M.; Lui, J.C.S. Online Search with Predictions: Pareto-optimal Algorithm and its Applications in Energy Markets. In Proceedings of the 15th ACM International Conference on Future and Sustainable Energy Systems, Vienna, Austria, 2–5 July 2024; pp. 386–407. [Google Scholar]
- Dochow, R. Online Algorithms for the Portfolio Selection Problem; Springer: Wiesbaden, Germany, 2016. [Google Scholar]
| Variable | Description |
|---|---|
| k | Total number of units to convert |
| l | Number of groups to convert |
| m | Lowest possible price |
| M | Highest possible price |
| T | Time horizon |
| Price at time t | |
| Price sequence | |
| Number of units in group i | |
| Unit sequence (sequence of grouped units) | |
| Terminal wealth | |
| Reservation price for group i | |
| Number of units converted at time t | |
| Group which can be converted at time t | |
| c | Competitive ratio |
| Algorithm | ||||
|---|---|---|---|---|
| kRPP/lRPP | 2.4407 | 2.3506 | ||
| lRPP | 2.6106 | 2.4981 | ||
| lRPP | (10,000 | 2.7384 | (10,000 | 2.7382 |
| RPP | 2.7386 | 2.7386 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Schwarz, M.; Dochow, R. The Weighted k-Search Problem. Mathematics 2026, 14, 206. https://doi.org/10.3390/math14020206
Schwarz M, Dochow R. The Weighted k-Search Problem. Mathematics. 2026; 14(2):206. https://doi.org/10.3390/math14020206
Chicago/Turabian StyleSchwarz, Michael, and Robert Dochow. 2026. "The Weighted k-Search Problem" Mathematics 14, no. 2: 206. https://doi.org/10.3390/math14020206
APA StyleSchwarz, M., & Dochow, R. (2026). The Weighted k-Search Problem. Mathematics, 14(2), 206. https://doi.org/10.3390/math14020206

