Biharmonic Riemannian Submersions from a Three-Dimensional Non-Flat Torus
Abstract
1. Introduction and Preliminaries
2. Riemannian Submersions from T2 × S1
3. Biharmonic Riemannian Submersions from
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baird, P.; Wood, J.C. Harmonic Morphisms Between Riemannian Manifolds; London Mathematical Society Monographs: New Series No. 29; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Eells, J.; Lemaire, L. Selected Topics in Harmonic Maps; CBMS Regional Conference Series in Mathematics; American Mathematical Society: Providence, RI, USA, 1983; Volume 50. [Google Scholar]
- Jiang, G.Y. 2-Harmonic maps and their first and second variational formulas. Chin. Ann. Math. Ser. A 1986, 7, 389–402. [Google Scholar]
- Balmuş, A.; Montaldo, S.; Oniciuc, C. Classification results for biharmonic submanifolds in spheres. Isr. J. Math. 2008, 168, 201–220. [Google Scholar] [CrossRef]
- Caddeo, R.; Montaldo, S.; Oniciuc, C. Biharmonic submanifolds of S3. Int. J. Math. 2001, 12, 867–876. [Google Scholar] [CrossRef]
- Caddeo, R.; Montaldo, S.; Oniciuc, C. Biharmonic submanifolds in spheres. Isr. J. Math. 2002, 130, 109–123. [Google Scholar] [CrossRef]
- Caddeo, R.; Montaldo, S.; Oniciuc, C.; Piu, P. The Euler-Lagrange Method for Biharmonic Curves. Mediterr. J. Math. 2006, 3, 449–465. [Google Scholar] [CrossRef]
- Jiang, G.Y. Some non-existence theorems of 2-harmonic isometric immersions into Euclidean spaces. Chin. Ann. Math. Ser. A 1987, 8, 376–383. [Google Scholar]
- Ou, Y.-L.; Tang, L. On the generalized Chen’s conjecture on biharmonic submanifolds. Mich. Math. J. 2012, 61, 531–542. [Google Scholar] [CrossRef]
- Ou, Y.-L.; Chen, B.-Y. Biharmonic Submanifolds and Biharmonic Maps in Riemannian Geometry; World Scientific Publishing Co., Pte. Ltd.: Hackensack, NJ, USA, 2020. [Google Scholar]
- Chen, B.Y. Some open problems and conjectures on submanifolds of finite type. Soochow J. Math. 1991, 17, 169–188. [Google Scholar]
- Oniciuc, C. Biharmonic maps between Riemannian manifolds. An. Stiint. Univ. Al I Cuza Iasi Mat. (N.S.) 2002, 48, 237–248. [Google Scholar]
- Wang, Z.-P.; Ou, Y.-L. Biharmonic Riemannian Submersions a 3-Dimensional BCV Space. J. Geom. Anal. 2024, 34, 63. [Google Scholar] [CrossRef]
- Akyol, M.A.; Ou, Y.-L. Biharmonic Riemannian submersions. Ann. Mat. Pura Appl. 2019, 198, 559–570. [Google Scholar] [CrossRef]
- Wang, Z.-P.; Ou, Y.-L. Biharmonic Riemannian submersions from 3-manifolds. Math. Z. 2011, 269, 917–925. [Google Scholar] [CrossRef]
- Wang, Z.-P.; Ou, Y.-L. Biharmonic Riemannian submersions from the product space . J. Geom. Anal. 2025, 35, 20. [Google Scholar] [CrossRef]
- Gromov, M. Almost flat manifolds. J. Differ. Geom. 1978, 13, 231–241. [Google Scholar] [CrossRef]
- Petersen, P. Riemannian Geometry, 2nd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Lachièze-Rey, M.; Luminet, J.P. Cosmic topology. Phys. Rep. 1995, 254, 135–214. [Google Scholar] [CrossRef]
- O’Neill, B. The fundamental equations of a submersion. Mich. Math. J. 1966, 13, 459–469. [Google Scholar] [CrossRef]
- Mei, X.M.; Huang, J.Z. Differential Geometry, 4th ed.; Higer Education Press: Beijing, China, 2008. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, Z.-P.; Liu, H.-F. Biharmonic Riemannian Submersions from a Three-Dimensional Non-Flat Torus. Mathematics 2026, 14, 132. https://doi.org/10.3390/math14010132
Wang Z-P, Liu H-F. Biharmonic Riemannian Submersions from a Three-Dimensional Non-Flat Torus. Mathematics. 2026; 14(1):132. https://doi.org/10.3390/math14010132
Chicago/Turabian StyleWang, Ze-Ping, and Hui-Fang Liu. 2026. "Biharmonic Riemannian Submersions from a Three-Dimensional Non-Flat Torus" Mathematics 14, no. 1: 132. https://doi.org/10.3390/math14010132
APA StyleWang, Z.-P., & Liu, H.-F. (2026). Biharmonic Riemannian Submersions from a Three-Dimensional Non-Flat Torus. Mathematics, 14(1), 132. https://doi.org/10.3390/math14010132

