Tian’s Conjecture on the Prime Factorization of the Binomial Coefficient
Abstract
1. Introduction
- (1)
- For the exponential Diophantine equationwhere and are unknown positive integers, there are only two solutions, namely, and .
- (2)
- Let and be distinct fixed prime numbers. The exponential Diophantine equationhas at most two solutions in positive integers and .
- (3)
- Let be distinct fixed prime numbers. The exponential Diophantine equationhas at most m positive integer solutions in positive integers . Here, a solution is the -tuple .
2. A General Computational Approach
2.1. Two Special Cases: The Equations and
2.2. Another Examples: The Equations and
3. Proofs with the Classical Zsigmondy Theorem
3.1. Proof of the First Sub-Conjecture
3.1.1. The Simple Cases
3.1.2. The Difficult Cases
- (1)
- ; then , which has no prime divisors.
- (2)
- , ; then any odd prime factors of must be contained in , which is also even.
- (3)
- ; then
3.2. Results Concerning the Second Sub-Conjecture
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shorey, T.N.; Tijdeman, R. Exponential Diophantine Equations; Cambridge Tracts in Mathematics 87; Cambridge University Press: Cambridge, UK, 1986. [Google Scholar] [CrossRef]
- Baker, A.; Wustholz, G. Logarithmic Forms and Diophantine Geometry; New Mathematical Monographs 9; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Bennett, M.A.; Győry, K.; Mignotte, M.; Pintér, Á. Binomial Thue equations and polynomial powers. Compos. Math. 2006, 142, 1103–1121. [Google Scholar] [CrossRef]
- Mordell, L.J. Diophantine Equations; Academic Press: London, UK, 1969. [Google Scholar]
- Stroeker, R.J.; Tzanakis, N. Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. Acta Arith. 1994, 67, 177–196. [Google Scholar] [CrossRef]
- Bennett, M.A.; Ghadermarzi, A. Mordell’s equation: A classical approach. LMS J. Comput. Math. 2015, 18, 633–646. [Google Scholar] [CrossRef]
- Zsigmondy, K. Zur Theorie der Potenzreste. Monatshefte Math. Phys. 1892, 3, 265–284. [Google Scholar] [CrossRef]
- Bang, A.S. Taltheoretiske Undersøgelser. Tidsskr. Math. 1886, 4, 70–80. [Google Scholar]
- Bang, A.S. Taltheoretiske Undersøgelser (continued, see p. 80). Tidsskr. Math. 1886, 4, 130–137. [Google Scholar]
- Schmid, T. Karl Zsigmondy. Jahresbericht der Deutschen Mathematiker-Vereinigung 1927, 36, 167–168. [Google Scholar]
- Roitman, M. On Zgismondy Primes. Proc. Am. Math. Soc. 1997, 125, 1913–1919. [Google Scholar] [CrossRef]
- Feit, W. On Large Zsigmondy Primes. Proc. Am. Math. Soc. 1988, 102, 29–36. [Google Scholar] [CrossRef]
- Evertse, J.-H.; Győry, K. Unit Equations in Diophantine Number Theory; Cambridge Studies in Advanced Mathematics 146; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar] [CrossRef]
| E | Solutions of E | |
|---|---|---|
| 1 | (−1, 0); (0, 1); (2, 3) | |
| 5 | ||
| 25 | ||
| 3 | (−2, 1); (0, 3); (3,6); (6, 15); (40, 253) | |
| 15 | (−6, 3); (−5, 10); (0, 15); (4, 17); (6, 21); (10, 35); (15, 60); (30, 165); (60, 465); (180, 2415); (336, 6159); (351, 6576); (720,114, 611,085,363) | |
| 75 | ||
| 9 | (0, 9) | |
| 45 | (−9,36); (0, 45); (10, 55); (90, 855) | |
| 225 | (−36, 63); (0, 225); (100, 1025) | |
| 2 | ||
| 10 | (−4, 6); (0, 10); (5, 15); (20,90); (24, 118); (2660, 137,190) | |
| 50 | (0,50) | |
| 6 | (−3, 3); (0, 6); (4, 10); (12, 42) | |
| 30 | (0, 30) | |
| 150 | (0, 150) | |
| 18 | (0, 18) | |
| 90 | (−20, 10); (0,90); (36, 234); (45, 315); (3640, 219,610) | |
| 450 | (0, 450); (189, 2637) | |
| 4 | (0, 4) | |
| 20 | (0, 20) | |
| 100 | (0, 100) | |
| 12 | (0, 12) | |
| 60 | (−15, 15); (0, 60); (24, 132); (40, 260) | |
| 300 | (−24, 276); (0, 300); (25, 325); (600, 14,700) | |
| 36 | (−8, 28); (0, 36); (9, 45); (72, 612) | |
| 180 | (0, 180) | |
| 900 | (0, 900) |
| E | Solutions of E | |
|---|---|---|
| 1 | (−1, 0); (0, 1); (2, 3) | |
| 7 | (0, 7) | |
| 49 | (0, 49); (15, 76) | |
| 3 | (−2, 1); (0, 3); (3, 6); (6, 15); (40, 253) | |
| 21 | (−6, 15); (0, 21); (7, 28); (42, 273) | |
| 147 | (−12, 141); (0, 147); (588, 14,259) | |
| 9 | (0, 9) | |
| 63 | (−14, 35); (−5, 62); (0, 63); (18, 99); (28, 161); (36, 225); (63, 504); (270, 4437); (630, 15,813) | |
| 441 | ||
| 2 | ||
| 14 | (−3, 13); (0, 14); (84, 770) | |
| 98 | (0, 98) | |
| 6 | (−3, 3); (0, 6); (4, 10); (12, 42) | |
| 42 | (−12, 6); (0, 42); (21, 105); (28, 154); (1320, 47,958) | |
| 294 | (0, 294); (72, 678) | |
| 18 | (0, 18) | |
| 126 | (0, 126) | |
| 882 | (0, 882) | |
| 4 | (0, 4) | |
| 28 | (−7, 21); (0, 28); (8, 36); (56, 420) | |
| 196 | (0, 196); (1617, 65,023) | |
| 12 | (0, 12) | |
| 84 | (0, 84) | |
| 588 | (0, 588) | |
| 36 | (−8, 28); (0, 36); (9, 45); (72, 612) | |
| 252 | (0, 252); (16, 260); (1008, 32,004) | |
| 1764 | (−143, 433); (0, 1764) |
| Solutions | |
|---|---|
| 2, 3 | |
| 2, 5 | |
| 2, 7 | |
| 2, 11 | – |
| 2, 13 | – |
| 2, 17 | |
| 3, 5 | |
| 3, 7 | |
| 3, 11 | |
| 3, 13 | |
| 3, 17 | |
| 5, 7 | |
| 5, 11 | |
| 5, 13 | |
| 5, 17 | – |
| 7, 11 | – |
| 7, 13 | |
| 7, 17 | – |
| 11, 13 | – |
| 11, 17 | – |
| 13, 17 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zeng, Z.; Pintér, Á.; Fu, X.; Tian, J.P.
Tian’s Conjecture on the Prime Factorization of the Binomial Coefficient
Zeng Z, Pintér Á, Fu X, Tian JP.
Tian’s Conjecture on the Prime Factorization of the Binomial Coefficient
Zeng, Zhenbing, Ákos Pintér, Xinchu Fu, and Jianjun Paul Tian.
2026. "Tian’s Conjecture on the Prime Factorization of the Binomial Coefficient
Zeng, Z., Pintér, Á., Fu, X., & Tian, J. P.
(2026). Tian’s Conjecture on the Prime Factorization of the Binomial Coefficient

