Next Article in Journal
Analyzing the Impact of Organic Food Consumption on Citizens Health Using Unsupervised Machine Learning
Previous Article in Journal
Auto-Probabilistic Mining Method for Siamese Neural Network Training
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Bowen’s Equations for Weighted Upper Metric Mean Dimension with Potential

1
Department of Mathematics, Ningbo University, Ningbo 315211, China
2
School of Statistics and Data Science, Ningbo University of Technology, Ningbo 315211, China
*
Author to whom correspondence should be addressed.
Mathematics 2025, 13(8), 1271; https://doi.org/10.3390/math13081271
Submission received: 10 March 2025 / Revised: 5 April 2025 / Accepted: 6 April 2025 / Published: 12 April 2025

Abstract

:
In this paper, we define the weighted upper metric mean dimension with potential and derive its corresponding Bowen’s equation. Furthermore, we introduce the weighted BS metric mean dimension and the weighted packing BS metric mean dimension on the subsets, and prove Bowen’s equations for both. Additionally, we establish variational principles for these dimensions, linking them to the weighted local measure-theoretic entropy.

1. Introduction and Main Results

Motivated by the fractal geometry of self-affine carpets and sponges [1,2,3], Feng and Huang [4] introduced the concept of weighted topological pressure and established a variational principle for it. Now, let us proceed to introduce the background of our study. Let ( X i , T i ) be topological dynamical systems (TDSs) for 1 i k and k 2 . For each 1 i k 1 , we set a factor map π i : X i X i + 1 . Specifically, π 1 , , π k 1 are continuous maps such that the following diagrams commute:
Mathematics 13 01271 i001
For simplicity, we define π 0 as the identity map on X 1 . For i = 0 , 1 , , k 1 , we define τ i : X 1 X i + 1 with τ i = π i π i 1 π 0 . Denote by M ( X i , T i ) the set of all T i -invariant Borel probability measures on X i and by E ( X i , T i ) the set of ergodic measures. Set a = ( a 1 , a 2 , , a k ) R k , where a 1 > 0 and a i 0 for i 2 . Take φ : X 1 R as a continuous function. They obtained the relationship between the weighted topological pressure and measure theoretic entropy, as follows:
P a ( T 1 , φ ) = sup μ M ( X 1 , T 1 ) ( i = 1 k a i h μ τ i 1 1 ( T i ) + φ d μ ) .
The connection between topological pressure and the dimension theory of dynamical systems emerges from the following result. Consider the equation
P ( t φ ) = 0 ,
where φ is a function related to a given invariant set. The unique t that solves this equation is often related to the Hausdorff dimension of that set. Bowen introduced this equation in [5] during his research on quasi-circles. Since then, it has become widely known as Bowen’s equation. The Bowen’s equation not only is applied to compute or estimate the dimension of invariant sets in invertible or non-invertible dynamics [6,7] but also admits a proper generalization. In [8], Barreira and Schmeling defined a new dimension, termed the BS dimension, and proved that it is the unique root of Bowen’s equation. Inspired by the work of Jaerisch et al. [9], Xing and Chen [10] introduced induced topological pressure, which specializes the BS dimension, and established Bowen’s equation for both induced and classical topological pressures.
Metric mean dimension quantifies the complexity of infinite-entropy systems. It was first introduced by Gromov [11] and further developed by Lindenstrauss and Weiss [12]. The metric mean dimension has various applications, including embedding problems [13,14,15,16,17,18,19] and ergodic theory [17,19,20,21,22,23,24,25,26]. Yang, Chen, and Zhou [27] introduced the concepts of induced metric mean dimension and BS metric mean dimension, deriving two Bowen equations for these quantities. Wang [28] was the first to introduce weighted versions of the definitions for mean dimension and metric mean dimension.
Throughout this paper, we assume that a = ( a 1 , , a k ) R k with a 1 > 0 and a i 0 for i 2 . For k 2 , let ( X i , d i ) be compact metric spaces, and ( X i , T i ) be topological dynamical systems. Let π i : X i X i + 1 be factor maps. Set π 0 to be the identity map on X 1 . Define τ i : X 1 X i + 1 by τ i = π i π i 1 π 0 for i = 0 , 1 , , k 1 . In the first main result, we introduce the concept of weighted induced metric mean dimension with potential and derive Bowen’s equations. The first key result is established as follows:
Theorem 1.
Let X 1 , T 1 be a topological dynamical system (TDS), φ , ψ C X 1 , R and ψ > 0 . Assume that
mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ < ,
then mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ is the unique root of the equation
mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ = 0 .
We refer to mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ as the weighted ψ induced upper metric mean dimension with potential φ, as defined in Definition 3.
Inspired by the works in [8,27,29], we define the weighted BS metric mean dimension and the weighted packing BS metric mean dimension, and then establish Bowen equations for both. The second main result is presented as follows:
Theorem 2.
Let X 1 , T 1 be a topological dynamical system (TDS) and Z be a non-empty subset of X 1 . Assume that φ C X 1 , R and φ > 0 . Then,
(a) 
If mdim ¯ M a X 1 , T 1 , d i i = 1 k < , then BSmdim ¯ M , Z , T 1 a φ is the only root of equation
mdim ¯ M , Z , T 1 a t φ = 0 .
(b) 
If Pmdim ¯ M a X 1 , T 1 , d i i = 1 k < , then BSPdim ¯ M , Z , T 1 a φ is the only root of equation
Pmdim ¯ M , Z , T 1 a t φ = 0 .
where BSmdim ¯ M , Z , T 1 a ( φ ) , BSPdim ¯ M , Z , T 1 a ( φ ) , and Pmdim ¯ M a ( X 1 , T 1 , { d i } i = 1 k ) denote the weighted BS metric mean dimension, weighted packing BS metric mean dimension, and weighted packing upper mean dimension over Z (see Definitions 6, 7, and 5), respectively.
In [30], Feng and Huang proved that for any non-empty compact subset K, the Bowen entropy of K can be expressed as the supremum of the measure-theoretic local entropies, taken over all Borel probability measures supported on K. In [27], Yang et al. applied Feng and Huang’s approach to prove variational principles for the BS metric mean dimension and the packing BS metric mean dimension. Inspired by the ideas presented in [8,29,30], we will separately establish variational principles for the weighted BS metric mean dimension and the weighted packing BS metric mean dimension.
Theorem 3.
Let X 1 , T 1 be a topological dynamical system (TDS) and K be a non-empty subset of X 1 . Assume that φ C X 1 , R and φ > 0 . Then
BSmdim ¯ M , K , T 1 a φ , d i i = 1 k = lim sup ϵ 0 sup h ̲ φ , μ a T 1 , ϵ : μ M X 1 , μ K = 1 log 1 ϵ ,
where the definition of h ̲ φ , μ a T 1 , ϵ can be found in Definition 8.
In this theorem, we extend the variational principle established in [30] for Bowen entropy to the weighted BS-metric mean dimension by introducing the weight vector a = ( a 1 , , a k ) . Our framework characterizes the complexity of multi-scale dynamical systems. The proof proceeds along the following steps:
1.
Combining Definition 8, we estimate the lower bound of covering numbers.
2.
Applying the Frostman lemma, we establish the upper bound relationship between local entropy and dimension.
Theorem 4.
Let X 1 , T 1 be a topological dynamical system (TDS). Assume that φ C X 1 , R and φ > 0 .
(a) 
If K X 1 is non-empty and compact, then
BSPdim ¯ M , K , T 1 a φ , d i i = 1 k = lim sup ϵ 0 sup h ¯ φ , μ a T 1 , ϵ : μ M X 1 , μ K = 1 log 1 ϵ ,
where the definition of h ¯ φ , μ a T 1 , ϵ can be found in Definition 8.
(b) 
If Z X 1 is analytic, then
BSPdim ¯ M , Z , T 1 a φ , d i i = 1 k = sup BSPdim ¯ M , K , T 1 a φ , d i i = 1 k : K Z is compact .
The proof proceeds along the following steps:
1.
Construct measures on compact subsets and link covering numbers with local entropy to prove the variational principle for packing BS dimension.
2.
Inductively construct compact subsets { K n } Z and use convergence to extend the result from K n to analytic Z.

2. Proof of Theorem 1

In this section, we turn our attention to the weighted upper metric mean dimension with potential, focusing on the entire space. Specifically, we introduce the concept of the weighted induced upper metric mean dimension with potential and subsequently derive Bowen’s equation for this dimension in the context of the entire phase space. For k 2 , let ( X i , d i ) be compact metric spaces, and ( X i , T i ) be topological dynamical systems. Let π i : X i X i + 1 be factor maps. Set π 0 to be the identity map on X 1 . Define τ i : X 1 X i + 1 by τ i = π i π i 1 π 0 for i = 0 , 1 , . . . , k 1 .

2.1. Weighted Induced Upper Metric Mean Dimension with Potential

Definition 1
(The a -weighted metric and a -weighted Bowen ball). For x , y X 1 , n N , ϵ > 0 , denote
d n a ( x , y ) = sup { d i ( T i j τ i 1 x , T i j τ i 1 y ) : 0 j ( a 1 + + a i ) n 1 , 1 i k } ,
and
B n a ( x , ϵ ) = y X 1 : d n a ( x , y ) < ϵ
where u denotes the least integer u . We call B n a ( x , ϵ ) the n-th a -weighted Bowen ball of radius ϵ centered at x.
Let φ , ψ C X 1 , R and ψ > 0 . For all n 1 , x X , we set S a 1 n φ x : = i = 0 a 1 n 1 φ T 1 i x and m : = min x X 1 ψ > 0 .
Definition 2.
Let 0 < ϵ < 1 and φ C ( X 1 , R ) . Set
# s e p X 1 , d n a , S a 1 n φ , ϵ = x F n 1 ϵ S a 1 n φ ( x ) : F n is an a , n , ϵ - separated set of X 1
and
P a X 1 , T 1 , d i i = 1 k , φ = lim sup n log # s e p X 1 , d n a , S a 1 n φ , ϵ n .
The weighted upper metric mean dimension with potential φ is given by
mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ = lim sup ϵ 0 P a X 1 , T 1 , d i i = 1 k , φ log 1 ϵ .
Specially, mdim ¯ M a X 1 , T 1 , d i i = 1 k = mdim ¯ M a X 1 , T 1 , d i i = 1 k , 0 .
Definition 3.
Let X 1 , T 1 be a topological dynamical system (TDS), φ , ψ C X 1 , R and ψ > 0 . For V > 0 , set
S V : = n N : x X 1 , such that S a 1 n ψ ( x ) V , S a 1 n + 1 ψ ( x ) > V .
For all n S V , ϵ > 0 , define
X n = x X 1 : S a 1 n ψ ( x ) V , S a 1 n + 1 ψ ( x ) > V
and
P ψ , V a X 1 , T 1 , d i i = 1 k , φ , ϵ = sup n S V x F n 1 ϵ S a 1 n φ ( x ) : F n is an a , n , ϵ - separated set of X 1 .
We call
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ = lim sup ϵ 0 lim sup V 1 V log 1 ϵ log P ψ , V a X 1 , T 1 , d i i = 1 k , φ , ϵ
the weighted ψ-induced upper metric mean dimension with potential φ.
Remark 1.
(a) If S V , then for any n S V , we have a 1 n V m + 1 , where V m is the integer part of V m and m = min x X 1 ψ x . In other words, S V is a finite set.
(b) 
If ψ = 1 , then the weighted ψ-induced upper metric mean dimension with potential φ and the weighted upper metric mean dimension with potential φ are equal, that is,
mdim ¯ M , 1 a X 1 , T 1 , d i i = 1 k , φ = mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ .
(c) 
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ > .
Analogous to the definition of classical topological pressure, we can also define the weighted ψ -induced upper metric mean dimension with potential φ via spanning sets.
Proposition 1.
Let X 1 , T 1 be a topological dynamical system (TDS), φ , ψ C X 1 , R and ψ > 0 . Set
Q ψ , V a X 1 , T 1 , d i i = 1 k , φ , ϵ = inf n S V x E n 1 ϵ S a 1 n φ ( x ) : E n i s a n a , n , ϵ - s p a n n i n g s e t o f X 1 ,
then
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ = lim sup ϵ 0 lim sup V 1 V log 1 ϵ log Q ψ , V a X 1 , T 1 , d i i = 1 k , φ , ϵ .
Proof. 
Let 0 < ϵ < 1 , n S V . Since the largest a , n , ϵ -separated set with respect to F n in X n is also an a , n , ϵ -spanning set of X n , we deduce that
Q ψ , V a X 1 , T 1 , d i i = 1 k , φ , ϵ P ψ , V a X 1 , T 1 , d i i = 1 k , φ , ϵ .
Hence,
lim sup ϵ 0 lim sup V 1 V log 1 ϵ log Q ψ , V a X 1 , T 1 , d i i = 1 k , φ , ϵ lim sup ϵ 0 lim sup V 1 V log 1 ϵ log P ψ , V a X 1 , T 1 , d i i = 1 k , φ , ϵ = mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ .
On the other hand, set γ ϵ : = sup φ x φ y : d 1 x , y < ϵ . Take E n to be an a , n , ϵ 2 -spanning set of X n and F n to be an a , n , ϵ -separated set of X n for n S V . Suppose there is a mapping Φ : F n E n . For any x in F n , Φ maps x to Φ ( x ) in E n and d n a x , Φ x < ϵ 2 . In this case, Φ : F n E n is an injective mapping . Therefore,
n S V y E n 2 ϵ S a 1 n φ y n S V x F n 2 ϵ S a 1 n φ Φ x = n S V x F n 2 ϵ S a 1 n φ Φ x S a 1 n φ x + S a 1 n φ x 2 ϵ a 1 γ ϵ V m + 1 n S V x F n 1 ϵ S a 1 n φ x 2 S a 1 n φ x 2 ϵ a 1 γ ϵ V m + 1 2 a 1 V m + 1 φ n S V x F n 1 ϵ S a 1 n φ x .
By Definition 3, we obtain
lim sup V 1 V log Q ψ , V a X 1 , T 1 , d i i = 1 k , φ , ϵ 2 a 1 m γ ϵ log 2 ϵ a 1 φ m log 2 + lim sup V 1 V log P ψ , V a X 1 , T 1 , d i i = 1 k , φ , ϵ .
Taking the limit as ϵ 0 and noting that γ ( ϵ ) 0 , we obtain
lim sup ϵ 0 lim sup V 1 V log 1 ϵ log Q ψ , V a X 1 , T 1 , d i i = 1 k , φ , ϵ mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ .

2.2. Bowen’s Equation for the Weighted Upper Metric Mean Dimension with Potential

In this part, our main purpose is to prove Theorem 1. For this, we will explore the relationship between mdim ¯ M a ( X 1 , T 1 , d i i = 1 k , φ ) and mdim ¯ M , ψ a ( X 1 , T 1 , d i i = 1 k , φ ) .
Theorem 5.
Let X 1 , T 1 be a topological dynamical system (TDS), φ , ψ C X 1 , R and ψ > 0 . For V > 0 , define
G V : = n N : x X 1 , such that S a 1 n ψ x > V .
For all n G V and ϵ > 0 , define
Y n = x X 1 : S a 1 n ψ x > V ,
R ψ , V a X 1 , T 1 , d i i = 1 k , φ , ϵ = sup n G V x F n 1 ϵ S a 1 n φ x : F n is an a , n , ϵ - s e p a r a t e d s e t o f Y n .
Then
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ = inf β R : lim sup ϵ 0 lim sup V R ψ , V a X 1 , T 1 , d i i = 1 k , φ β ψ , ϵ < .
We use the convention that inf = .
Proof. 
For n N , x X 1 , m a 1 n x is defined by
m a 1 n x 1 ψ < S a 1 n ψ x m a 1 n x ψ .
Then, we have
ψ < S a 1 n ψ x m a 1 n x ψ 0 ,
that is,
β S a 1 n ψ x m a 1 n x ψ β ψ
for all β R . Consequently, we find
1 ϵ β ψ m a 1 n x 1 ϵ β ψ 1 ϵ β S a 1 n ψ x 1 ϵ β ψ m a 1 n x 1 ϵ β ψ
for any x X 1 . Given 0 < ϵ < 1 . We take
R ψ , V a 1 X 1 , T 1 , d i i = 1 k , φ , β ψ m a 1 n + β ψ n G V , ϵ = sup { n G V x F n 1 ϵ S a 1 n φ x β ψ m a 1 n ( x ) β ψ : F n is an a , n , ϵ - separated set of Y n } ,
R ψ , V a 2 X 1 , T 1 , d i i = 1 k , φ , β ψ m a 1 n β ψ n G V , ϵ = sup { n G V x F n 1 ϵ S a 1 n φ x β ψ m a 1 n ( x ) + β ψ : F n is an a , n , ϵ - separated set of Y n }
and let
A = inf β R : lim sup ϵ 0 lim sup V R ψ , V a 1 X 1 , T 1 , d i i = 1 k , φ , Υ A , ϵ < , B = inf β R : lim sup ϵ 0 lim sup V R ψ , V a X 1 , T 1 , d i i = 1 k , φ β ψ , ϵ < , C = inf β R : lim sup ϵ 0 lim sup V R ψ , V a 2 X 1 , T 1 , d i i = 1 k , φ , Υ C , ϵ < ,
where Υ A = β ψ m a 1 n + β ψ ,   Υ C = β ψ m a 1 n β ψ ,   n G V .
Based on (3), we can infer that A B C . However, to prove (1), we still need to verify that
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ A a n d C mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ .
We proceed with the proof in two steps.
Step 1: Let us start by proving mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ A .
Assume first
β < mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ .
Then we can find a positive integer δ > 0 and a sequence { ϵ k } with 0 < ϵ k < 1 , so that the following two conditions hold:
β + δ < mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ ;
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ = lim sup k lim sup V 1 log 1 ϵ k V P ψ , V a X 1 , T 1 , d i i = 1 k , φ , ϵ k .
In this case, there is K 0 N , so for all k > K 0 , we look at a subsequence V j j N . As j , this subsequence converges to and satisfies the following inequality:
1 ϵ k V j β + δ 2 < P ψ , V j a X 1 , T 1 , d i i = 1 k , φ , ϵ k .
According to Definition 3, for any j N and n S V j , we have
1 ϵ k V j β + δ 2 < n S V j x F n 1 ϵ k S a 1 n φ x ,
where F n is an a , n , ϵ -separated set of X n .
We claim that for any V > 0 . If S V , then for any n S V , we have
V ψ 1 a 1 n V m + 1 ,
where m = min x X 1 ψ x > 0 . Suppose that n S V , then we can find x X 1 so that S a 1 n ψ x V and S a 1 n + 1 ψ x > V . From this, it follows that S a 1 n ψ x + ψ > V . Hence, V ψ < S a 1 n ψ x V .
We take any V j 1 and note that V j , so we can take V j 2 such that
V j 1 m + 1 < V j 2 ψ 1 .
We claim that
S V i S V j =
with i j . In fact, we suppose that S V i S V j , let n S V i S V j with i < j . For this n, we can pick x 1 , x 2 X 1 , where S a 1 n ψ x 1 V i , S a 1 n + 1 ψ x 1 > V i and S a 1 n ψ x 2 V j , S a 1 n + 1 ψ x 2 > V j . In light of (5), it follows that
a 1 n V i m + 1 < V j ψ 1 < a 1 n ,
which contradicts the assumption.
Since for any j N , n S V j , if x F n , then we have V j ψ < S a 1 n ψ x V j . According to (2), we can obtain V j ψ < m a 1 n x ψ and m a 1 n x ψ < V j + ψ , that is, ψ m a 1 n x V j < 2 ψ . Hence,
β ψ m a 1 n ( x ) β V j 2 β ψ
for any β R . Therefore, combining (4) and (6), we can obtain
R ψ , V a 1 X 1 , T 1 , d i i = 1 k , φ , β ψ m a 1 n + β ψ n G V , ϵ k j N , V j ψ > t n S V j x F n 1 ϵ k S a 1 n φ x β ψ m a 1 n ( x ) β ψ 1 ϵ k 3 β ψ j N , V j ψ > V n S V j x F n 1 ϵ k S a 1 n φ x β V j 1 ϵ k 3 β ψ j N , V j ψ > V 1 ϵ k δ 2 V j = .
This yields that for any β < mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ , we have that
lim sup ϵ 0 lim sup V R ψ , V a 1 X 1 , T 1 , d i i = 1 k , φ , β ψ m a 1 n + β ψ , ϵ =
is valid. Furthermore, this leads to
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ A .
If mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ = , suppose P < mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ . Then, for any β < P , we can infer that
lim sup ϵ 0 lim sup V R ψ , V a 1 X 1 , T 1 , d i i = 1 k , φ , β ψ m a 1 n + β ψ , ϵ = .
Due to the arbitrariness of P, A = inf = . Hence,
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ = A = .
Step 2: Let us now prove C mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ . Let δ > 0 ; for any 0 < ϵ < ϵ 0 , 0 < ϵ 0 < 1 , there exists
lim sup V log 1 ϵ V log P ψ , V a X 1 , T 1 , d i i = 1 k , φ , ϵ < mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ + δ 2 .
Consequently, there is a variable l 0 N , for which, when l l 0 , we have
log P ψ , l m a X 1 , T 1 , d i i = 1 k , φ , ϵ < 1 ϵ k l m mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ + 2 δ 3 ,
δ 3 l 0 m 1 > 0 ,
where = 3 ψ mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ + δ , m = min x X 1 ψ x .
For n S l m , suppose that F n is an a , n , ϵ -separated set of X n ; then, for every x F n , it holds that S a 1 n ψ x l m and S a 1 n + 1 ψ x > l m , i.e., l m ψ < S a 1 n ψ x l m . Combining (2) for m a 1 n x , we obtain
ψ m a 1 n x l m < 2 ψ .
Hence,
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ + δ ψ m a 1 n x l m mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ + δ + 2 ψ mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ + δ .
When V is sufficiently large, for n G V , assume that F n is an a , n , ϵ -separated set of Y n ; then for any x F n , there is one and only one l l 0 for which l 1 m < S a 1 n ψ x l m . Hence, S a 1 n + 1 ψ x = S a 1 n ψ x + ψ T 1 a 1 n x > l m . It can be seen that
R ψ , V a 2 X 1 , T 1 , d i i = 1 k , φ , η ψ m a 1 n η ψ n G V , ϵ l l 0 sup { n S l m x F n 1 ϵ S a 1 n φ x η ψ m a 1 n ( x ) + η ψ : F n is an a , n , ϵ - separated set of X n } 1 ϵ 3 η ψ l l 0 sup { n S l m x F n 1 ϵ S a 1 n φ x l m η : F n is an a , n , ϵ - separated set of X n } 1 ϵ l l 0 1 ϵ δ 3 l m = 1 ϵ δ 3 l 0 m 1 1 ϵ δ 2 m < ϵ 1 1 ϵ δ 2 m < 1 1 1 ϵ δ 2 m ,
where η = mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ + δ . Thus,
lim sup ϵ 0 lim sup V R ψ , V a 2 X 1 , T 1 , d i i = 1 k , φ , η ψ m a 1 n x η ψ , ϵ 1 .
Then C mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ + δ . When δ 0 , it follows that
C mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ .
Corollary 1.
Let φ , ψ C X 1 , R and ψ > 0 . Then
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ inf β R : mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ 0 .
Proof. 
Based on the result (1) proved by Theorem 5, we let β belong to the set
β R : lim sup ϵ 0 lim sup V R ψ , V a X 1 , T 1 , d i i = 1 k , φ β ψ , ϵ <
and define M as M : = lim sup ϵ 0 lim sup V R ψ , V a X 1 , T 1 , d i i = 1 k , φ β ψ , ϵ . According to the definition of M , we know that there exists ϵ 0 0 , 1 . For any ϵ 0 , ϵ 0 , we can obtain V 0 N . Consequently, for all V V 0 , the inequality
R ψ , V a X 1 , T 1 , d i i = 1 k , φ β ψ , ϵ < M + 1
is satisfied. Combining the definition of P a X 1 , T 1 , d i i = 1 k , φ in Definition 2, we can find a subsequence n j with the property that n j as j . As a result, the following equalities hold
P a X 1 , T 1 , d i i = 1 k , φ β ψ , ϵ = lim sup n log # s e p X 1 , d n a , S a 1 n φ β ψ , ϵ n = lim j log # s e p X 1 , d n j a , S a 1 n j φ β ψ , ϵ n j .
For any V V 0 , we can determine a positive integer n j > V such that for every x X 1 , S a 1 n ψ x > V . This indicates that n j G V . Assume that F n j is an a , n j , ϵ -separated set of X 1 , then
x F n j 1 ϵ S a 1 n j φ x β ψ x < M + 1 .
This shows that P a X 1 , T 1 , d i i = 1 k , φ β ψ , ϵ 0 . Hence, we have
mdim ¯ a X 1 , T 1 , d i i = 1 k , φ β ψ 0 .
Finally, we obtain that
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ inf β R : mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ 0 .
The proposition that follows provides an in-depth explanation of Bowen’s equation of mdim ¯ M a ( X 1 , T 1 , { d i } i = 1 k , φ β ψ ) in terms of β .
Proposition 2.
Let φ , ψ C X 1 , R and ψ > 0 . Given a mapping
β R mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ ,
then the following statement is valid.
(a) 
For β 0 R , if
mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β 0 ψ = ,
then the map mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ · ψ is infinite.
(b) 
For β 0 R , if
mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β 0 ψ < ,
then the map mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ · ψ is finite, strictly decreasing, and continuous on R . What is more, the equation
mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ = 0
has a unique (finite) root.
Proof. 
Let 0 < ϵ < 1 , β 1 , β 2 R , and for any n N , we have
x E 1 ϵ S a 1 n φ x β 2 S a 1 n ψ x a 1 n β 1 β 2 ψ x E 1 ϵ S a 1 n φ x β 1 S a 1 n ψ x x E 1 ϵ S a 1 n φ x β 2 S a 1 n ψ x + a 1 n β 1 β 2 ψ ,
where E is an a , n , ϵ -separated set of X 1 . Hence,
mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β 2 ψ β 1 β 2 ψ mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β 1 ψ mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β 2 ψ + β 1 β 2 ψ .
This implies that the finiteness of mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β 1 ψ is equivalent to the finiteness of
mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β 2 ψ .
Based on the assumption of ( b ) , we move on to prove the other statements.
According to (10), we have
mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β 1 ψ mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β 2 ψ β 1 β 2 ψ .
Based on this inequality, we can infer that the mapping mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ · ψ is continuous on R .
Next, we will prove that the mapping mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ · ψ is strictly decreasing. Take β 1 , β 2 R such that β 1 < β 2 and fix 0 < ϵ < 1 . Suppose E is an a , n , ϵ -separated set of X 1 , then we obtain
x F n 1 ϵ S a 1 n φ x β 2 S a 1 n ψ x x F n 1 ϵ S a 1 n φ x β 1 S a 1 n ψ x + β 1 β 2 S a 1 n ψ x x F n 1 ϵ S a 1 n φ x β 1 S a 1 n ψ x + β 1 β 2 a 1 n m ,
where m = min x X 1 ψ x > 0 . From these inequalities, we can conclude that
mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β 2 ψ mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β 1 ψ β 2 β 1 m ,
that is
β 2 β 1 m mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β 1 ψ mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β 2 ψ .
Finally, we need to prove the uniqueness of the root of the equation
mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ = 0 .
When mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ = 0 , only β = 0 satisfies the equation
mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ = 0 .
When mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ 0 , suppose mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ > 0 , β 1 = 0 , β 2 = h > 0 into (11), and we obtain
mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ h ψ mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ h m .
Therefore, the only root of the equation mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ = 0 meets the condition 0 < β mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ m . Suppose mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ < 0 ; let β 1 = h < 0 , β 2 = 0 into (11), and we obtain
mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ h m mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ h ψ .
Therefore, the only root of the equation mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ = 0 meets the condition 0 > β mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ m .
Proposition 3.
Let φ , ψ C X 1 , R , and ψ > 0 . Then
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ = inf β R : mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ 0 = sup β R : mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ 0 .
Proof. 
If there exists β 0 R such that mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β 0 ψ = , then, in this case, according to Proposition 2, we know that
mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ =
for any β R . In addition, the statement in Corollary 1 shows that
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ inf β R : mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ 0 .
Consequently, we obtain
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ = sup β R : mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ 0 = inf β R : mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ 0 = inf = .
If for any β R , we have mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ R . Next first prove that
mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ inf β R : mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ 0 .
Suppose β R and mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ = 2 a < 0 . Then there is ϵ 0 0 , 1 with the property that, for any ϵ 0 , ϵ 0 , we can select N 0 so that
sup x E 1 ϵ S a 1 n φ x β ψ x : F n is an a , n , ϵ - separated set of X 1 < 1 ϵ a n .
This indicates that when V is sufficiently large, we have
R ψ , V a X 1 , T 1 , d i i = 1 k , φ β ψ , ϵ n N 0 sup F n x F n 1 ϵ S a 1 n φ x β S a 1 n ψ x n N 0 1 ϵ a n < 1 1 ϵ a .
By taking the limits, we can obtain
lim sup ϵ 0 lim sup V R ψ , V a X 1 , T 1 , d i i = 1 k , φ β ψ , ϵ 1 .
Then, by combining the previously proven (1), we obtain
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ = inf β R : lim sup ϵ 0 lim sup V R ψ , V a X 1 , T 1 , d i i = 1 k , φ β ψ , ϵ < inf β R : mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ < 0 .
Combining with Proposition 2, we can prove that
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ inf β R : mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ < 0 = inf β R : mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ 0 = sup β R : mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ 0 .
On the contrary, the reverse inequality has been proven in Corollary 1. □
Proof of Theorem 1.
Based on Proposition 2, the equation
mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ = 0
has a unique root β . Then using Proposition 3, we find that β is equal to
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ .

3. Proof of Theorem 2

Section 3 is divided into two parts. The first part presents basic definitions and preliminary results associated with the weighted upper metric mean dimension with potential on subsets. The second part formulates Bowen’s equations for the weighted upper metric mean dimension with potential on subsets.

3.1. Several Types of Weighted Upper Metric Dimension with Potential

Definition 4.
Let 0 < ϵ < 1 and λ R . For Z X 1 , φ C X 1 , R . We define
M a T 1 , d i i = 1 k , Z , φ , λ , N , ϵ = inf i I e n i λ + 1 a 1 log 1 ϵ sup y B n i a x i , ϵ S a 1 n i φ y ,
where we take the infimum over all finite or countable covers B n i a x i , ϵ i I of Z with n i N .
m ¯ a T 1 , d i i = 1 k , Z , φ , λ , N , ϵ = inf i I e N λ + 1 a 1 log 1 ϵ sup y B N a x i , ϵ S a 1 N φ y ,
where we take the infimum over all finite or countable covers B n i a x i , ϵ i I of Z with n i = N .
Let
M a T 1 , d i i = 1 k , Z , φ , λ , ϵ = lim N M a T 1 , d i i = 1 k , Z , φ , λ , N , ϵ , m ¯ a T 1 , d i i = 1 k , Z , φ , λ , ϵ = lim N m ¯ a T 1 , d i i = 1 k , Z , φ , λ , N , ϵ .
Then we can obtain the critical values of λ from ∞ to 0 for M a T 1 , d i i = 1 k , Z , φ , λ , ϵ and m ¯ a T 1 , d i i = 1 k , Z , φ , λ , ϵ , which we respectively denote as
mdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ : = inf λ : M a T 1 , d i i = 1 k , Z , φ , λ , ϵ = 0 = sup λ : M a T 1 , d i i = 1 k , Z , φ , λ , ϵ = , upmdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ : = inf λ : m ¯ a T 1 , d i i = 1 k , Z , φ , λ , ϵ = 0 = sup λ : m ¯ a T 1 , d i i = 1 k , Z , φ , λ , ϵ = .
Put
mdim ¯ M , Z , T 1 a φ , d i i = 1 k = lim sup ϵ 0 mdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ log 1 ϵ , upmdim ¯ M , Z , T 1 a φ , d i i = 1 k = lim sup ϵ 0 upmdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ log 1 ϵ .
The quantities mdim ¯ M , Z , T 1 a φ , d i i = 1 k and upmdim ¯ M , Z , T 1 a φ , d i i = 1 k are respectively referred to as the weighted Bowen upper mean dimension with potential φ, the weighted u-upper metric mean dimension with potential φ on the set Z. Additionally, when the metrics d i for i = 1 ,   ,   k are clear, we can omit their mention from these quantities. Particularly, when φ = 0 , we denote
mdim ¯ M a T 1 , Z , d i i = 1 k : = mdim ¯ M , Z , T 1 a 0 , d i i = 1 k
as the weighted Bowen upper mean dimension on the set Z.
Remark 2.
Let Z be a subset of X 1 . We define
mdim ¯ M a Z , T 1 , d i i = 1 k , φ = lim sup ϵ 0 lim sup n 1 n log 1 ϵ log inf E n x E n e 1 a 1 log 1 ϵ · S a 1 n φ x ,
where the infimum runs over all ( a , n , ϵ ) -spanning sets E n of Z. Similarly, we can obtain that
mdim ¯ M a Z , T 1 , d i i = 1 k , φ = lim sup ϵ 0 lim sup n 1 n log 1 ϵ log sup F n x F n e 1 a 1 log 1 ϵ · S a 1 n φ x = upmdim ¯ M , Z , T 1 a φ , d i i = 1 k ,
where the supremum runs over all ( a , n , ϵ ) -separated sets F n of Z.
Definition 5.
Let 0 < ϵ < 1 and λ R . For Z X 1 , φ C X 1 , R . We define
P a T 1 , d i i = 1 k , Z , φ , λ , N , ϵ = sup i I e n i λ + 1 a 1 log 1 ϵ · sup y B ¯ n i a x i , ϵ S a 1 n i φ y ,
where we take the supremum over all finite or countable pairwise disjoint closed families B ¯ n i a x i , ϵ i I of Z with n i N , x i Z . The value P a T 1 , d i i = 1 k , Z , φ , λ , ϵ is monotonically decreasing in N, so we define
P a T 1 , d i i = 1 k , Z , φ , λ , ϵ = lim N P a T 1 , d i i = 1 k , Z , φ , λ , N , ϵ .
Set
P a T 1 , d i i = 1 k , Z , φ , λ , ϵ = inf i = 1 P a T 1 , d i i = 1 k , Z i , φ , λ , ϵ : i 1 Z i Z .
Then we can obtain the critical values of λ from ∞ to 0 for P a T 1 , d i i = 1 k , Z , φ , λ , ϵ , which we denote as
Pmdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ : = inf λ : P a T 1 , d i i = 1 k , Z , φ , λ , ϵ = 0 = sup λ : P a T 1 , d i i = 1 k , Z , φ , λ , ϵ = .
Let
Pmdim ¯ M , Z , T 1 a φ , d i i = 1 k = lim sup ϵ 0 Pmdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ log 1 ϵ .
The value Pmdim ¯ M , Z , T 1 a φ , d i i = 1 k is referred to as the weighted packing upper mean dimension with potential φ on the set Z. Moreover, when d i for i = 1 , . . . , k is clear, we can omit their mention from these quantities. In addition, when φ = 0 , we denote Pmdim ¯ M a T 1 , Z , d i i = 1 k : = Pmdim ¯ M , Z , T 1 a 0 , d i i = 1 k as the weighted packing upper mean dimension on the set Z.
Proposition 4.
Let φ C X 1 , R .
(i) 
If Z 1 Z 2 X , then
mdim ¯ M , Z 1 , T 1 a φ mdim ¯ M , Z 2 , T 1 a φ , upmdim ¯ M , Z 1 , T 1 a φ upmdim ¯ M , Z 2 , T 1 a φ , Pmdim ¯ M , Z 1 , T 1 a φ Pmdim ¯ M , Z 2 , T 1 a φ .
(ii) 
If Z = i 1 Z i , then
mdim ¯ M , Z , T 1 a φ = max 1 i N mdim ¯ M , Z i , T 1 a φ , upmdim ¯ M , Z , T 1 a φ = max 1 i N upmdim ¯ M , Z i , T 1 a φ , Pmdim ¯ M , Z , T 1 a φ = max 1 i N Pmdim ¯ M , Z i , T 1 a φ .
(iii) 
If any non-empty set Z X 1 , then
mdim ¯ M , Z , T 1 a φ Pmdim ¯ M , Z , T 1 a φ upmdim ¯ M , Z , T 1 a φ .
Proof. 
(i) and (ii) can be directly derived from Definitions 4 and 5.
(iii) Let ϵ 0 , 1 , γ 4 ε = sup φ x φ y : d 1 x , y 4 ϵ , Z X 1 , and n N . Let R denote the maximal cardinality of a disjoint family B ¯ n a x i , ϵ i = 1 R with x i Z . It is obvious that i = 1 R B n a x i , 3 ϵ Z .
Assume that λ R ; we have
M a T 1 , d i i = 1 k , Z , φ , λ , n , 3 ϵ i = 1 R e n λ + 1 a 1 log 1 3 ϵ · sup y B n a x i , 3 ϵ S a 1 n φ y i = 1 R e n λ + 1 a 1 log 1 3 ϵ · sup y B ¯ n a x i , ϵ S a 1 n φ y + 1 a 1 a 1 n γ 4 ε log 1 3 ϵ i = 1 R e n λ + 1 a 1 log 1 ϵ · sup y B ¯ n a x i , ϵ S a 1 n φ y 1 a 1 a 1 n φ log 1 3 + 1 a 1 a 1 n γ 4 ε log 1 3 ϵ P a T 1 , d i i = 1 k , Z , φ , λ φ log 1 3 γ 4 ε log 1 3 ϵ , n , ϵ .
For any i 1 Z i Z , we have
M a T 1 , d i i = 1 k , Z , φ , λ , 3 ϵ i 1 M a T 1 , d i i = 1 k , Z i , φ , λ , 3 ϵ i 1 P a T 1 , d i i = 1 k , Z i , φ , λ φ log 1 3 γ 4 ε log 1 3 ϵ , ϵ .
It follows that
mdim ¯ M , Z , T 1 a φ , d i i = 1 k , 3 ϵ Pmdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ + log 1 3 φ + γ 4 ε log 1 3 ϵ .
Therefore, we can obtain mdim ¯ M , Z , T 1 a φ Pmdim ¯ M , Z , T 1 a φ .
Next, we prove that Pmdim ¯ M , Z , T 1 a φ upmdim ¯ M , Z , T 1 a φ . We can suppose that
Pmdim ¯ M , Z , T 1 a φ > ,
because if not, there is nothing to prove. Let < v < Pmdim ¯ M , Z , T 1 a φ , then we can pick a subsequence ϵ k with ϵ k 0 , 1 that converges to 0 when k . As a result,
Pmdim ¯ M , Z , T 1 a φ , d i i = 1 k = lim k Pmdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ k log 1 ϵ k > v .
Hence, for any k > K 0 with K 0 N , there is Pmdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ k > v log 1 ϵ k . In this way,
P a T 1 , d i i = 1 k , Z , φ , v log 1 ϵ k , ϵ k P a T 1 , d i i = 1 k , Z , φ , v log 1 ϵ k , ϵ k = .
Fix k > K 0 , for each N N , we can determine a countable pairwise disjoint closed family B ¯ n i a x i , ϵ i I with n i N , x i Z , so that
i I e n i v log 1 ϵ k + 1 a 1 log 1 ϵ k · sup y B ¯ n a x i , ϵ S a 1 n i φ y > 1 .
Define E l = x n i : n i = l , i I with l N . Then
l N x E l e l v log 1 ϵ k + 1 a 1 log 1 ϵ k · S a 1 l φ y + a 1 l γ ε k l N x E l e l v log 1 ϵ k + 1 a 1 log 1 ϵ k · sup y B ¯ l a x , ϵ k S a 1 l φ y > 1 ,
where γ ε : = sup φ x φ y : d 1 x , y ϵ . Let u < v , then there is an l N N such that
x E l N e l N v γ ε k log 1 ϵ k + 1 a 1 log 1 ϵ k S a 1 l N φ x > 1 e u v log 1 ϵ k e u v l N log 1 ϵ k ,
that is,
x E l N 1 ϵ k S a 1 l N φ x > 1 e u v log 1 ϵ k 1 ϵ k u γ ε k l N ,
where E l N is an a , l N , ϵ k -separated set of Z. Hence, we can obtain
lim sup N 1 N log 1 ϵ k log sup E N x E N 1 ϵ k S a 1 N φ x u γ ε k ,
where the supremum runs over all a , N , ϵ k -separated sets of Z. Observe that when k , γ ε k 0 , combined with Remark 2, it can be concluded that
upmdim ¯ M , Z , T 1 a φ , d i i = 1 k u .
Finally, we let u Pmdim ¯ M , Z , T 1 a φ , d i i = 1 k ; we can obtain the desired result. □

3.2. Bowen’s Equation for Weighted Upper Metric Mean Dimension

In this subsection, we first studied some basic characteristics of functions. These functions are defined using the weighted Bowen upper metric mean dimension with potential and the weighted packing upper metric mean dimension with potential on a subset of X 1 . Next, we defined the weighted BS metric mean dimension and the weighted packing BS metric mean dimension. Finally, we proved that they are the only roots of the corresponding Bowen’s equation.
Given a non-empty subset Z X 1 and φ C X 1 , R , next, we look at the following functions:
Φ t = Pmdim ¯ M , Z , T 1 a t φ , d i i = 1 k , ϕ t = mdim ¯ M , Z , T 1 a t φ , d i i = 1 k .
Proposition 5.
Let a = ( a 1 , , a k ) R k with a 1 > 0 and a i 0 for i 2 . Let Z X 1 be a non-empty subset, φ C X 1 , R , and φ < 0 . Then for any t R , we have mdim ¯ M , Z , T 1 a t φ > , and mdim ¯ M , Z , T 1 a t φ < if and only if mdim ¯ M a T 1 , Z < .
Proof. 
Set m = min x X 1 φ x and 0 < ϵ < 1 . When t 0 , then for any N, we have
M a T 1 , d i i = 1 k , Z , t φ , t m log 1 ϵ , N , ϵ = inf i I e n i t m log 1 ϵ + 1 a 1 log 1 ϵ · sup y B n i a x i , ϵ S a 1 n i φ y ,
where we take the infimum over all finite or countable covers B n i a x i , ϵ i I of Z with n i N . According to Definition 3, we have mdim ¯ M , Z , T 1 a φ , ϵ t m log 1 ϵ . Consequently, mdim ¯ M , Z , T 1 a t φ t m > . When t < 0 , take t > 0 . Given that t φ t φ and M a T 1 , d i i = 1 k , Z , φ , λ , N , ϵ is a monotonic function with respect to φ , we can obtain
mdim ¯ M , Z , T 1 a t φ mdim ¯ M , Z , T 1 a t φ > .
Next, we prove the equivalence between mdim ¯ M , Z , T 1 a t φ < and mdim ¯ M a T 1 , Z < . For any t R , by Definition 4, we can obtain
M a T 1 , d i i = 1 k , Z , 0 , λ t φ log 1 ϵ , N , ϵ = inf i I e n i λ t n i φ log 1 ϵ inf i I e n i λ + t 1 a 1 log 1 ϵ sup y B n i a x i , ϵ S a 1 n i φ y inf i I e n i λ + t n i φ log 1 ϵ = M a T 1 , d i i = 1 k , Z , 0 , λ + t φ log 1 ϵ , N , ϵ ,
where we take the infimum over all finite or countable covers B n i a x i , ϵ i I of Z and n i N . When φ = 0 , we have mdim ¯ M a T 1 , Z = mdim ¯ M , Z , T 1 a 0 . Then, combining this with (12), we can deduce that
mdim ¯ M a T 1 , Z t φ mdim ¯ M , Z , T 1 a t φ mdim ¯ M a T 1 , Z + t φ .
Proposition 6.
Let φ C X 1 , R with φ < 0 . Assuming mdim ¯ M a T 1 , X 1 < , then the function ϕ t is strictly decreasing and Lipschitz, the function ϕ t = 0 has a single (finite) root s, and 1 m mdim ¯ M a T 1 , Z s 1 M mdim ¯ M a T 1 , Z , where m = min x X 1 φ x , M = max x X 1 φ x .
Proof. 
Given t 1 , t 2 R with t 1 > t 2 , and 0 < ϵ < 1 , N N , choose a cover B n i a x i , ϵ i I of Z where n i N . We thus obtain
i I e n i λ + t 1 1 a 1 log 1 ϵ · sup y B n i a x i , ϵ S a 1 n i φ y i I e n i λ + t 2 1 a 1 log 1 ϵ · sup y B n i a x i , ϵ S a 1 n i φ y + t 1 t 2 n i M log 1 ϵ .
Based on this, we can obtain
mdim ¯ M , Z , T 1 a t 1 φ mdim ¯ M , Z , T 1 a t 2 φ + t 1 t 2 M .
Hence, we can conclude that ϕ t is strictly decreasing on R .
Likewise, we can obtain
mdim ¯ M , Z , T 1 a t 2 φ + t 1 t 2 m mdim ¯ M , Z , T 1 a t 1 φ .
Taking the Lipschitz constant as m , we can see that
mdim ¯ M , Z , T 1 a t 1 φ mdim ¯ M , Z , T 1 a t 2 φ m t 1 t 2 .
Let t 1 = h > 0 , t 2 = 0 in (13), then we have
mdim ¯ M , Z , T 1 a h φ mdim ¯ M a T 1 , Z h M ,
which implies that
mdim ¯ M , Z , T 1 a 1 M mdim ¯ M a T 1 , Z φ 0 .
Let t 1 = h > 0 , t 2 = 0 in (14), then we have
mdim ¯ M , Z , T 1 a h φ mdim ¯ M a T 1 , Z h m .
It follows that
mdim ¯ M , Z , T 1 a 1 m mdim ¯ M a T 1 , Z φ 0 .
Finally, by applying the intermediate value theorem of continuous functions, it can be concluded that the function ϕ t = 0 has a single (finite) root s, and
1 m mdim ¯ M a T 1 , Z s 1 M mdim ¯ M a T 1 , Z .
By slightly modifying Proposition 6, we can obtain the following results:
Proposition 7.
Let φ C X 1 , R and φ < 0 . Assume Pmdim ¯ M a T 1 , X 1 < . Then the function Φ t is strictly decreasing, Lipschitz, and the function Φ t = 0 has a single root.
Below, we define two novel concepts: the weighted BS metric mean dimension and the weighted packing BS metric mean dimension, both of which are defined on subsets.
Definition 6.
Let 0 < ϵ < 1 , N N and λ R . For Z X 1 , φ C X 1 , R and φ > 0 . We define
R a T 1 , d i i = 1 k , φ , λ , Z , N , ϵ = inf { i I e λ 1 a 1 sup y B n i a x i , ϵ S a 1 n i φ y } ,
where we take the infimum over all finite or countable covers B n i a x i , ϵ i I of Z with n i N .
The value R a T 1 , d i i = 1 k , φ , λ , Z , N , ϵ does not decrease with the increase in N, so we define
R a T 1 , d i i = 1 k , φ , λ , Z , ϵ = lim N R a T 1 , d i i = 1 k , φ , λ , Z , N , ϵ .
Then we can obtain the critical values of λ from ∞ to 0 for R a T 1 , d i i = 1 k , φ , λ , Z , ϵ , which we respectively denote as
BSmdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ = inf λ : R a T 1 , d i i = 1 k , φ , λ , Z , ϵ = 0 = sup λ : R a T 1 , d i i = 1 k , φ , λ , Z , ϵ = .
Let
BSmdim ¯ M , Z , T 1 a φ , d i i = 1 k = lim sup ϵ 0 BSmdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ log 1 ϵ .
The value BSmdim ¯ M , Z , T 1 a φ , d i i = 1 k is referred to as the weighted BS upper mean dimension with respect to φ on the set Z (or simply weighted BS metric mean dimension). Moreover, when d i for i = 1 , . . . , k is clear, we can omit their mention from these quantities.
Definition 7.
Let 0 < ϵ < 1 , N N , and λ R . For Z X 1 , φ C X 1 , R and φ > 0 . We define
P p a T 1 , d i i = 1 k , φ , λ , Z , N , ϵ = sup i I e λ 1 a 1 sup y B ¯ n i a x i , ϵ S a 1 n i φ y ,
where we take the supremum over all finite or countable pairwise disjoint closed families B ¯ n i a x i , ϵ i I of Z with n i N , x i Z . The value P p a T 1 , d i i = 1 k , φ , λ , Z , N , ϵ is monotonically decreasing in N, so we define
P p a T 1 , d i i = 1 k , φ , λ , Z , ϵ = lim N P p a T 1 , d i i = 1 k , φ , λ , Z , N , ϵ .
Set
P p a T 1 , d i i = 1 k , φ , λ , Z , ϵ = inf i = 1 P p a T 1 , d i i = 1 k , φ , λ , Z i , ϵ : i 1 Z i Z .
Then we can obtain the critical values of λ from ∞ to 0 for P p a T 1 , d i i = 1 k , φ , λ , Z , ϵ , which we denote as
BSPdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ = inf λ : P p a T 1 , d i i = 1 k , φ , λ , Z , ϵ = 0 = sup λ : P p a T 1 , d i i = 1 k , φ , λ , Z , ϵ = .
Let
BSPdim ¯ M , Z , T 1 a φ , d i i = 1 k = lim sup ϵ 0 BSPdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ log 1 ϵ .
The value BSPdim ¯ M , Z , T 1 a φ , d i i = 1 k is referred to as the weighted packing BS upper mean dimension with respect to φ on the set Z (or simply weighted packing BS metric mean dimension). Moreover, when d i for i = 1 , . . . , k is clear, we can omit their mention from these quantities.
Remark 3.
(a) For any Z X 1 , 0 BSmdim ¯ M , Z , T 1 a φ BSPdim ¯ M , Z , T 1 a φ .
(b) 
BSmdim ¯ M , Z , T 1 a 1 = mdim ¯ M a T 1 , Z , BSPdim ¯ M , Z , T 1 a 1 = Pmdim ¯ M a T 1 , Z .
Proof of Theorem 2.
Let ϵ 0 , 1 , for any N, by combining Definitions 4 and 6, we have
M a T 1 , d i i = 1 k , Z , λ φ log 1 ϵ , 0 , N , ϵ = R a T 1 , d i i = 1 k , φ , λ , Z , N , ϵ .
If v > BSmdim ¯ M , Z , T 1 a φ , then for small-enough ϵ > 0 ,
R a T 1 , d i i = 1 k , φ , v log 1 ϵ , Z , ϵ < 1 .
Therefore, we obtain that M a T 1 , d i i = 1 k , Z , v φ , 0 , ϵ < 1 , suggesting mdim ¯ M , Z , T 1 a v φ 0 . By proving the continuity of ϕ through Proposition 6, it can be concluded that when v BSmdim ¯ M , Z , T 1 a φ ,
mdim ¯ M , Z , T 1 a BSmdim ¯ M , Z , T 1 a φ φ 0 .
If v < BSmdim ¯ M , Z , T 1 a φ , we can pick a subsequence ϵ k 0 , 1 with ϵ k 0 when k , so that
BSmdim ¯ M , Z , T 1 a φ , d i i = 1 k = lim sup k mdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ k log 1 ϵ k .
Consequently, for large-enough k, R a T 1 , d i i = 1 k , φ , v log 1 ϵ k , Z , ϵ k > 1 . Hence, we can obtain M a T 1 , d i i = 1 k , Z , v φ , 0 , ϵ k > 1 . Similarly, we infer that
mdim ¯ M , Z , T 1 a BSmdim ¯ M , Z , T 1 a φ φ 0 .
By Proposition 6, we can obtain that BSmdim ¯ M , Z , T 1 a φ is the only root of the equation
mdim ¯ M , Z , T 1 a t φ = 0 .
By P a T 1 , d i i = 1 k , Z , λ log 1 ϵ φ , 0 , ϵ = P p a T 1 , d i i = 1 k , φ , λ , Z , ϵ , we can similarly obtain that BSPdim ¯ M , Z , T 1 a φ is the only root of the equation Pmdim ¯ M , Z , T 1 a t φ = 0 .
Corollary 2.
Let φ , ψ C X 1 , R , and ψ > 0 . Then
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , 0 = BSmdim ¯ M , X 1 , T 1 a ψ .
Proof. 
If mdim ¯ M a X 1 , T 1 , d i i = 1 k = , by Remark 3, we can obtain
mdim ¯ M a X 1 , T 1 , d i i = 1 k = mdim ¯ M , X 1 , T 1 a 0 , d i i = 1 k = mdim ¯ M , X 1 , T 1 a 0 · ψ , d i i = 1 k = mdim ¯ M a X 1 , T 1 , d i i = 1 k , 0 · ψ , d i i = 1 k =
By Proposition 2, taking φ = 0 , we have mdim ¯ M a X 1 , T 1 , d i i = 1 k , β ψ , d i i = 1 k = for any β R . By Proposition 3, we have
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , 0 = inf β R : mdim ¯ M a X 1 , T 1 , d i i = 1 k , β ψ 0 = inf = .
Let M : = max x X 1 ψ x > 0 , for any ϵ 0 , 1 , λ 0 , and N N , we have
R a T 1 , d i i = 1 k , ψ , λ , X 1 , N , ϵ = inf i I e λ 1 a 1 sup y B n i a x i , ϵ S a 1 n i φ y inf i I e λ M n i = M a T 1 , d i i = 1 k , X 1 , 0 , M λ , N , ϵ ,
where we take the infimum over all finite or countable covers B n i a x i , ϵ i I of Z where n i = N . We thus obtain
= mdim ¯ M a T 1 , X 1 , d i i = 1 k M BSmdim ¯ M , X 1 , T 1 a ψ , d i i = 1 k .
Therefore,
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , 0 = BSmdim ¯ M , X 1 , T 1 a ψ , d i i = 1 k = .
For mdim ¯ M a T 1 , X 1 , d i i = 1 k < , by Remark 2, we have
mdim ¯ M a X 1 , T 1 , d i i = 1 k = mdim ¯ M a T 1 , X 1 , d i i = 1 k < .
By Theorem 1, we can obtain
mdim ¯ M , X 1 , T 1 a mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , 0 · ψ , d i i = 1 k = mdim ¯ M a X 1 , T 1 , d i i = 1 k , mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , 0 · ψ , d i i = 1 k = 0 .
Combining with Theorem 2 and the uniqueness of the equation’s roots, we have
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , 0 = BSmdim ¯ M , X 1 , T 1 a ψ , d i i = 1 k .

4. Proof of Theorems 3 and 4

In this section, we mainly set up the variational principle for the weighted BS and packing BS metric mean dimension on subsets using the given weighted upper and lower local measure-theoretical BS entropies.
Definition 8.
Let μ M X 1 , φ C X 1 , R with φ > 0 , we set up the weighted upper and lower local measure-theoretical BS entropies of μ as
h ¯ φ , μ a T 1 = lim ϵ 0 h ¯ φ , μ a T 1 , ϵ , h ̲ φ , μ a T 1 = lim ϵ 0 h ̲ φ , μ a T 1 , ϵ ,
respectively, where
h ¯ φ , μ a T 1 , ϵ = lim sup n a 1 log μ B n a x , ϵ S a 1 n φ x d μ = h ¯ φ , μ a T 1 , x , ϵ d μ , h ̲ φ , μ a T 1 , ϵ = lim inf n a 1 log μ B n a x , ϵ S a 1 n φ x d μ = h ̲ φ , μ a T 1 , x , ϵ d μ .
Lemma 1
([31]). Let r > 0 and B ( r ) = { B n a ( x , r ) : x X , n = 1 , 2 , } . For any family F B ( r ) , there exists a (not necessarily countable) subfamily G F consisting of disjoint balls such that
B F B B n a ( x , r ) G B n a ( x , 3 r ) .
Definition 9.
Let φ C X 1 , R with φ > 0 , and ϕ > 0 with ϕ is a bounded function on X 1 . Additionally, let ϵ > 0 , N N , and λ R . We define
W a T 1 , d i i = 1 k , φ , ψ , λ , N , ϵ = inf i = 1 c i e λ 1 a 1 sup y B n i a x i , ϵ S a 1 n i φ y ,
where the infimum is over all finite or countable families ( B n i a x i , ϵ , c i ) i I such that 0 < c i < , x i X , n i N , and i I c i χ B n i a x i , ϵ ψ , with χ E denoting the characteristic function of E.
For Z to be a subset of X 1 , set
W a T 1 , d i i = 1 k , φ , Z , λ , N , ϵ : = W a T 1 , d i i = 1 k , φ , χ Z , λ , N , ϵ .
Since the value W a T 1 , d i i = 1 k , φ , Z , λ , N , ϵ does not decrease with the increase in N, we define
W a T 1 , d i i = 1 k , φ , Z , λ , ϵ = lim N W a T 1 , d i i = 1 k , φ , Z , λ , N , ϵ .
Then we can obtain the critical values of λ from ∞ to 0 for W a T 1 , d i i = 1 k , φ , Z , λ , ϵ , which we denote as
Wmdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ = inf λ : W a T 1 , d i i = 1 k , φ , Z , λ , ϵ = 0 = sup λ : W a T 1 , d i i = 1 k , φ , Z , λ , ϵ = .
Let Wmdim ¯ M , Z , T 1 a φ , d i i = 1 k = lim sup ϵ 0 Wmdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ log 1 ϵ .
The value Wmdim ¯ M , Z , T 1 a φ , d i i = 1 k is referred to as the weighted BS metric mean dimension with respect to φ on the set Z. Furthermore, when d is clear, we can generally omit d from the value.

4.1. Variational Principle for the Weighted BS Metric Mean Dimension

In this subsection, we set up the variational principle for the weighted BS metric mean dimension on subsets.
Proposition 8.
Let φ C X 1 , R with φ > 0 , and let 0 < ϵ < 1 , and Z X 1 . Then
R a T 1 , d i i = 1 k , φ , Z , λ + δ , N , 6 ϵ W a T 1 , d i i = 1 k , φ , Z , λ , N , ϵ R a T 1 , d i i = 1 k , φ , Z , λ , N , ϵ ,
for λ > 0 , δ > 0 . Hence,
BSmdim ¯ M , Z , T 1 a φ , d i i = 1 k = Wmdim ¯ M , Z , T 1 a φ , d i i = 1 k .
Proof. 
Let Z X 1 , λ > 0 , ϵ , and δ > 0 . By setting ψ = χ Z , c i = 1 in (15), we obtain that for any N N ,
W a T 1 , d i i = 1 k , φ , Z , λ , N , ϵ R a T 1 , d i i = 1 k , φ , Z , λ , N , ϵ .
Next, we only need to prove that
R a T 1 , d i i = 1 k , φ , Z , λ + δ , N , 6 ϵ W a T 1 , d i i = 1 k , φ , Z , λ , N , ϵ .
Let N > 2 , so that n 2 e n m δ 1 when n N , where m = min x X 1 φ x . Consider a family B n i a x i , ϵ , c i i I with the properties 0 < c i < , x i X 1 , n i N , and
i I c i χ B i a χ Z ,
where B i a = B n i a x i , ϵ . Next, we show that
R a T 1 , d i i = 1 k , φ , Z , λ + δ , N , 6 ϵ i I c i e λ 1 a 1 sup y B n i a x i , ϵ S a 1 n i φ y ,
which means R a T 1 , d i i = 1 k , φ , Z , λ + δ , N , 6 ϵ W a T 1 , d i i = 1 k , φ , Z , λ , N , ϵ .
To simplify a later discussion, we first define the notations. For n N , k N , we set I n = i I : n i = n , I n , k = i I n : i k . For convenience, let B i a = B n i a x i , ϵ , 5 B i a = B n i a x i , 5 ϵ for i I . Suppose that B i B j whenever i j . Given t > 0 , we establish
Z n , t = x Z : i I n c i χ B i a ( x ) > t , Z n , k , t = x Z : i I n , k c i χ B i a ( x ) > t .
We are going to prove (17) by dividing it into three steps.
Step 1: For any n N , k N and t > 0 , there is a finite set J n , k , t I n , k with pairwise disjoint balls B i a for i J n , k , t , Z n , k , t i J n , k , t 5 B i a and
i J n , k , t e λ 1 a 1 sup y B n a x i , ϵ S a 1 n φ y 1 t i I n , k c i e λ 1 a 1 sup y B n a x i , ϵ S a 1 n φ y .
As I n , k is finite, we can assume that every c i is a positive rational by upward-approximating the c i ’s. Next, multiplying by a common denominator allows us to assume that every c i is a positive integer.
Let m 0 be the smallest integer such that m 0 t . Denote B = B i a : i I n , k , and define a mapping v : B Z where v B i a = c i . We define, by means of induction, interval-valued functions v 0 , v 1 , , v m 0 on B , as well as subfamilies B 0 , B 1 , , B m 0 of B , commencing with v 0 = v . Utilizing Lemma 1, we obtain a pairwise disjoint subfamily B 1 of B with B B B a B B 1 5 B a . As a consequence, it follows that Z n , k , t B B 1 5 B a . Then, through the repeated application of Lemma 1, we can inductively define for j = 1 , , m 0 , disjoint subfamilies B j of B with
B j B a B : v j 1 B a 1 , Z n , k , t B B j 5 B a ,
where
v j B a = v j 1 B a 1 , B a B j , v j 1 B a , B a B B j .
When j < m 0 , we obtain
Z n , k , t x : B a B : B a x v j B a m 0 j .
Therefore,
j = 1 m 0 B a B j e λ 1 a 1 sup y B a S a 1 n φ y = j = 1 m 0 B a B j v j 1 B a v j B a e λ 1 a 1 sup y B a S a 1 n φ y B a B j = 1 m 0 v j 1 B a v j B a e λ 1 a 1 sup y B a S a 1 n φ y B a B v B a e λ 1 a 1 sup y B a S a 1 n φ y = i I n , k c i e λ 1 a 1 sup y B a S a 1 n φ y .
Take j 0 1 , , m 0 for which B a B j 0 e λ 1 a 1 sup y B a S a 1 n φ y is the smallest. Then
B a B j 0 e λ 1 a 1 sup y B a S a 1 n φ y 1 m 0 i I n , k c i e λ 1 a 1 sup y B a S a 1 n φ y 1 t i I n , k c i e λ 1 a 1 sup y B a S a 1 n φ y .
Therefore, J n , k , t = i I n , k : B a B j 0 is desired.
Step 2: For any n N , t > 0 , we obtain
R a T 1 , d i i = 1 k , φ , Z n , t , λ + δ , N , 6 ϵ 1 n 2 t i I n c i e λ 1 a 1 sup y B a S a 1 n φ y .
To prove the above result, let Z n , t ; otherwise, the proof is not necessary. Since Z n , k , t Z n , t , when k is sufficiently large, Z n , k , t is non-empty. Let J n , k , t denote the sets obtained from Step 1. Then, for a large-enough k, J n , k , t is also non-empty. Define E n , k , t = x i : i J n , k , t . It is well known that the family of all non-empty compact subsets of X 1 is compact in the Hausdorff distance (cf. Federer [32]). As a consequence, there exists a subsequence k j of natural numbers, and a non-empty compact set E n , t X . As j , E n , k j , t converges to E n , t in the Hausdorff distance. Given that, with respect to the metric d n a , the distance between any two points within the set E n , k , t is at least ϵ , the same is true for E n , t . Thus, E n , t is finite. Additionally, when j is large enough, # E n , k j , t = # E n , t . Therefore,
x E n , t B n a x , 5.5 ϵ x E n , k j , t B n a x , 5 ϵ = i J n , k j , t 5 B i a Z n , k j , t ;
thus, x E n , t B n a x , 6 ϵ Z n , t . Additionally, when j is large enough, # E n , k j , t = # E n , t , we have
x E n , t e λ 1 a 1 sup y B a S a 1 n φ y 1 t i I n c i e λ 1 a 1 sup y B i a S a 1 n φ y .
Therefore,
R a T 1 , d i i = 1 k , φ , Z n , t , λ + δ , N , 6 ϵ x E n , t e λ + δ 1 a 1 sup y B x i , 6 ϵ S a 1 n φ y 1 t e n m δ i I n c i e λ 1 a 1 sup y B x i , 6 ϵ S a 1 n φ y 1 n 2 t i I n c i e λ 1 a 1 sup y B x i , 6 ϵ S a 1 n φ y .
Since B x i , 6 ϵ B x i , ϵ , we deduce that
R a T 1 , d i i = 1 k , φ , Z n , t , λ + δ , N , 6 ϵ 1 n 2 t i I n c i e λ 1 a 1 sup y B i a S a 1 n φ y .
Step 3: For every t ( 0 , 1 ) , we obtain
R a T 1 , d i i = 1 k , φ , Z , λ + δ , N , 6 ϵ 1 t i I c i e λ 1 a 1 sup y B i a S a 1 n i φ y .
Then (17) is valid.
To prove the above result, let t ( 0 , 1 ) . Note that n = N 1 n 2 < 1 . Hence,
Z n = N Z n , n 2 t
from (16). Then by (18) and with R a T 1 , d i i = 1 k , φ , · , λ + δ , N , 6 ϵ being an outer measure, we have
R a T 1 , d i i = 1 k , φ , Z , λ + δ , N , 6 ϵ n = N R a T 1 , d i i = 1 k , φ , Z n , n 2 t , λ + δ , N , 6 ϵ n = N 1 t i I n c i e λ 1 a 1 sup y B i a S a 1 n φ y = 1 t i I c i e λ 1 a 1 sup y B i a S a 1 n i φ y ,
which finishes the proof of the lemma. □
Lemma 2.
Let K X 1 be a non-empty compact subset, λ 0 , N N , ϵ > 0 , φ C X 1 , R and φ > 0 . Suppose that c : = W a T 1 , d i i = 1 k , φ , K , λ , N , ϵ > 0 ; then there exists a Borel probability measure μ M X 1 , such that μ K = 1 , and
μ B n a x , ϵ 1 c e λ 1 a 1 S a 1 n φ x
holds for any x X 1 , n N .
Proof. 
Certainly, c < . Now, on the space C ( X 1 ) of continuous real-valued functions on X 1 , we proceed to define a function p as follows:
p f = 1 c W a T 1 , d i i = 1 k , φ , χ K · f , λ , N , ϵ ,
with W a T 1 , d i i = 1 k , φ , · , λ , N , ϵ defined according to (15).
Define 1 C ( X 1 ) as the constant function, and for any x X 1 , 1 ( x ) 1 . It can be readily verified that
(1)
For any g , f C X 1 , p f + g p f + p g .
(2)
For any t 0 and f C X 1 , p t f = t p f .
(3)
p 1 = 1 , for any f C X 1 , the inequality 0 p f f holds, and for any g C X 1 with g 0 , p g = 0 .
By the Hahn–Banach theorem, the linear functional t t p 1 for t R , defined on the constant-function subspace, can be extended to L : C X 1 R . It satisfies L 1 = p 1 = 1 . For any f C X 1 , we have p f L f p f . Additionally, if f C X 1 with f 0 , then p f = 0 , so L f 0 . Given that L ( 1 ) = 1 , applying the Riesz representation theorem allows us to obtain a Borel probability measure μ on X 1 . For all f C ( X 1 ) , this μ satisfies L f = f d μ .
Now, we show that μ K = 1 . Let E 1 be an arbitrary compact subset of X 1 K ; the Urysohn lemma ensures the existence of f C X 1 with 0 f 1 , f x = 1 for x E 1 , and f x = 0 for x K . Then f · χ K 0 , so p f = 0 . Since μ E 1 = L f p f , we obtain μ E 1 = 0 . As E 1 is any compact subset of X 1 K ; this implies μ X 1 K = 0 , and thus, μ K = 1 .
Finally, we show that for x X 1 , n N ,
μ B n a x , ϵ 1 c e λ 1 a 1 S a 1 n φ x .
For any compact set E 2 B n a x , ϵ , from the Urysohn lemma, we know that there exists f C X 1 , so that 0 f 1 , f y = 1 , for y E 2 , and f y = 0 , for y X 1 B n a x , ϵ . Then, we have μ E 2 = L f p f . As f · χ K χ B n a x , ϵ and n N , we obtain
W a T 1 , d i i = 1 k , φ , χ K · f , λ , N , ϵ e λ 1 a 1 S a 1 n φ x ,
and p f 1 c e λ 1 a 1 S a 1 n φ x . Consequently,
μ E 2 e λ 1 a 1 S a 1 n φ x .
Based on this result, we obtain
μ B n a x , ϵ sup μ E 2 : E 2 is a compact subset of B n a x , ϵ 1 c e λ 1 a 1 S a 1 n φ x .
Proof of Theorem 3.
We will prove that
BSmdim ¯ M , K , T 1 a φ , d i i = 1 k = lim sup ϵ 0 sup h ̲ φ , μ a T 1 , ϵ : μ M X 1 , μ K = 1 log 1 ϵ .
On the one hand, we seek to prove that l h s r h s . For x X 1 , n N , ϵ > 0 , by Definition 8, we have
h ̲ φ , μ a T 1 , ϵ = h ̲ φ , μ a T 1 , x , ϵ d μ .
Therefore, it suffices to prove
1 γ 2 ϵ m h ̲ φ , μ a T 1 , x , ϵ d μ R a T 1 , d i i = 1 k , φ , K , ϵ 2 ,
for any 0 < ϵ < 1 .
Fix 0 < ϵ < 1 and l N . Denote
γ 2 ϵ = sup φ x φ y : d 1 x , y < 2 ϵ ,
and
u l = min l , h ̲ φ , μ a T 1 , x , ϵ d μ 1 l .
Next, we can find a Borel set A l X 1 such that μ A l > 0 and N N . For all x A l and n N , we have
μ B n a x , ϵ e u l 1 a 1 S a 1 n φ x .
There is a countable or finite family B n i a x i , ϵ 2 , where x i X 1 , n i N , and it satisfies the condition that
i B n i a x i , ϵ 2 K A l .
It is known that for any i, B n i a x i , ϵ K A l , so there is y i B n i a x i , ϵ 2 K A l . Then, from (19), we obtain the following inequalities:
i e u l 1 a 1 1 γ 2 ϵ m sup z B n i a x i , ϵ 2 S a 1 n i φ z i e u l 1 a 1 sup z B n i a x i , ϵ 2 S a 1 n i φ z + u l 1 a 1 γ 2 ϵ a 1 n i i e u l 1 a 1 sup z B n i a x i , ϵ 2 S a 1 n i φ z + u l n i γ 2 ϵ i e u l 1 a 1 S a 1 n i φ y i i μ B n i a y i , ϵ i μ B n i a x i , ϵ 2 μ K A l = μ A l > 0 .
Based on these results, we obtain
R a T 1 , d i i = 1 k , φ , 1 γ 2 ϵ m u l , K , ϵ 2 R a T 1 , d i i = 1 k , φ , 1 γ 2 ϵ m u l , K A l , ϵ 2 μ A l .
Hence,
R a T 1 , d i i = 1 k , φ , K , ϵ 2 1 γ 2 ϵ m u l .
Letting l , we have
1 γ 2 ϵ m h ̲ φ , μ a T 1 , x , ϵ d μ R a T 1 , d i i = 1 k , φ , K , ϵ 2 .
Therefore,
1 γ 2 ϵ m h ̲ φ , μ a T 1 , ϵ R a T 1 , d i i = 1 k , φ , K , ϵ 2 .
Combining
BSmdim ¯ M , K , T 1 a φ , d i i = 1 k = lim sup ϵ 0 R a T 1 , d i i = 1 k , φ , K , ϵ log 1 ϵ ,
we can obtain l h s r h s .
On the other hand, let BSmdim ¯ M , K , T 1 a φ , d i i = 1 k > 0 . By Proposition 8, we have
BSmdim ¯ M , K , T 1 a φ , d i i = 1 k = Wmdim ¯ M , K , T 1 a φ , d i i = 1 k .
Suppose that 0 < λ < Wmdim ¯ M , K , T 1 a φ , d i i = 1 k . Then, there exists a sequence ϵ k with 0 < ϵ k < 1 , and this sequence converges to 0 as k . Hence,
Wmdim ¯ M , K , T 1 a φ , d i i = 1 k = lim k Wmdim ¯ M , K , T 1 a φ , d i i = 1 k , ϵ k log 1 ϵ k > λ .
Thus, for a large-enough k, there is an N 0 N . Then we define a positive number as
c : = W a T 1 , d i i = 1 k , φ , K , λ log 1 ϵ k , N 0 , ϵ k > 0 .
From Lemma 2, a Borel probability measure μ M X 1 exists. It has μ K = 1 , and
μ B n a x , ϵ k 1 c e λ 1 a 1 log 1 ϵ k S a 1 n φ x
holds for any x X 1 , n N 0 . Hence,
sup h ̲ φ , μ a T 1 , ϵ k : μ M X 1 , μ K = 1 log 1 ϵ k h ̲ φ , μ a T 1 , ϵ log 1 ϵ k λ .
Let λ Wmdim ¯ M , K , T 1 a φ , d i i = 1 k ; combined with
BSmdim ¯ M , K , T 1 a φ , d i i = 1 k = Wmdim ¯ M , K , T 1 a φ , d i i = 1 k ,
we can obtain l h s r h s for a sufficiently large k.

4.2. Variational Principle for the Weighted Packing BS Metric Mean Dimension

In what follows, we are going to establish the variational principle for the weighted packing BS metric mean dimension on subsets. To attain this goal, we introduce an additional concept. In a metric space, a set is an analytic set if it is the continuous image of the set N of infinite natural-number sequences (with product topology). It is well known that, in a Polish space, analytic subsets are closed under countable unions and intersections, and all Borel sets are analytic (cf. [32]).
Lemma 3.
Let Z be a subset of X 1 , s , ϵ > 0 . If P p a T 1 , d i i = 1 k , φ , s , Z , ϵ = , then for any finite interval a , b R with a 0 and any N N , there exists a finite disjoint family B ¯ n i a x i , ϵ where x i Z , n i N and
i e s a 1 S a 1 n i φ x i a , b .
Proof. 
Select a sufficiently large N 1 N so that e N m s < b a . Given that
P p a T 1 , d i i = 1 k , φ , s , Z , ϵ = ,
we can conclude that P p a T 1 , d i i = 1 k , φ , s , Z , N , ϵ = . Therefore, there is a finite disjoint family B ¯ n i a x i , ϵ where x i Z and n i N , and the following inequalities hold:
i e s a 1 S a 1 n i φ x i > i e s a 1 sup y B ¯ n i a x i , ϵ S a 1 n i φ y > b .
As e s a 1 S a 1 n i φ x i e N m s < b a , we can remove elements from this collection one by one. In the end, we can make i e s a 1 S a 1 n i φ x i a , b .
Proof of Theorem 4.
We split the proof into the following two parts:
Part 1.
BSPdim ¯ M , Z , T 1 a φ , d i i = 1 k lim sup ϵ 0 sup h ¯ φ , μ a T 1 , ϵ : μ M X 1 , μ Z = 1 log 1 ϵ ,
for any Borel set Z X 1 . Given μ M ( X 1 ) , where μ ( Z ) = 1 and h ¯ φ , μ a ( T 1 , 2 ϵ ) > 0 . For s 0 , h ¯ φ , μ a ( T 1 , 2 ϵ ) , by Definition 8, we can select δ > 0 and a Borel set A Z satisfying μ ( A ) > 0 . Then, for any x A ,
lim sup n a 1 log μ B n a x , ϵ S a 1 n φ x > s + δ .
Next, we prove P p a T 1 , d i i = 1 k , φ , s 1 γ ϵ m , Z , ϵ 5 = , where m = min x X 1 φ ( x ) with the property that m > 0 , and γ ( ϵ ) = sup { | φ ( x ) φ ( y ) | : d 1 ( x , y ) ϵ } . For this purpose, we only need to demonstrate that, for every E A and μ ( E ) > 0 , we have
P p a T 1 , d i i = 1 k , φ , s 1 γ ϵ m , E , ϵ 5 = .
To this end, we fix a set E like this and define
E n : = { x E : μ ( B n a ( x , 2 ϵ ) ) < e ( s + δ a 1 ) S a 1 n φ x } .
We then obtain that, for every N N , E = n N E n . After that, we fix such N. Combining μ ( E ) = μ ( n N E n ) with n = 1 1 n n + 1 = 1 , we can obtain that when n N , μ ( E n ) 1 n ( n + 1 ) μ ( E ) . Fix n; consider taking into account a family of closed covers for the set E n , which is { B n a ( x , ϵ 5 ) : x E n } . According to Lemma 1, there is a finite pairwise disjoint subfamily { B n a ( x , ϵ 5 ) : x E n } i I , where I is a finite index set, and it holds that
i I B n a ( x i , ϵ ) x E n B n a ( x , ϵ 5 ) E n .
For any i I , we obtain
sup y B ¯ n a ( x , ϵ 5 ) S a 1 n φ ( y ) S a 1 n φ ( x i ) + a 1 n γ ( ϵ ) S a 1 n φ ( x i ) + sup y B ¯ n a ( x , ϵ 5 ) S a 1 n φ ( y ) m γ ( ϵ ) .
Consequently,
P p a T 1 , d i i = 1 k , φ , s 1 γ ϵ m , E , ϵ 5 P p a T 1 , d i i = 1 k , φ , s 1 γ ϵ m , E n , ϵ 5 i ϵ I e s a 1 1 γ ϵ m s u p y B ¯ n a x i , ϵ 5 S a 1 n φ y i ϵ I e s a 1 S a 1 n φ x i = i ϵ I e 1 a 1 s + δ S a 1 n φ x i e δ a 1 S a 1 n φ x i e n m δ i ϵ I μ B ¯ n a x i , ϵ e n m δ μ E n e n m δ μ E n n + 1 .
As N , we arrive at the result that P p a T 1 , d i i = 1 k , φ , s 1 γ ϵ m , E , ϵ 5 = . Therefore,
BSPdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ 5 s 1 γ ϵ m .
Furthermore, as s h ¯ φ , μ a T 1 , 2 ϵ , for every μ M X 1 satisfying μ Z = 1 , we obtain
h ¯ φ , μ a T 1 , 2 ϵ 1 γ ϵ m BSPdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ 5 .
This implies
BSPdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ 5 1 γ ϵ m sup h ¯ φ , μ a T 1 , 2 ϵ : μ M X 1 , μ Z = 1 ,
and thus,
BSPdim ¯ M , Z , T 1 a φ , d i i = 1 k lim sup ϵ 0 sup h ¯ φ , μ a T 1 , ϵ : μ M X 1 , μ Z = 1 log 1 ϵ .
Part 2. Let Z be an analytic subset of X 1 , BSPdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ > 0 . For every s 0 , BSPdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ , there is a compact K Z and μ M ( K ) so that h ¯ φ , μ a T 1 , ϵ s .
Given that Z is an analytic set, there is a continuous surjective mapping ϕ : N Z . Denote by Γ n 1 , n 2 , , n p the set of all ( m 1 , m 2 , ) N satisfying the conditions m 1 n 1 , m 2 n 2 , , m p n p . Furthermore, let Z n 1 , , n p be the image of Γ n 1 , , n p via the map ϕ .
Take ϵ > 0 to be sufficiently small such that 0 < s < BSPdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ . Take t s , BSPdim ¯ M , Z , T 1 a φ , d i i = 1 k , ϵ . Through an inductive process, we construct a sequence of finite sets ( K i ) i = 1 and a sequence of finite measures ( μ i ) i = 1 . For every i , we will ensure that K i Z and the measure μ i has its support on the set K i . Alongside the two sequences ( K i ) i = 1 and ( μ i ) i = 1 , we further construct a sequence of integers ( n i ) , a sequence of positive numbers ( γ i ) , and a sequence of integer-valued functions ( m i : K i N ) . Our construction method gets inspired by Joyce and Preiss’s [33] and Feng and Huang’s [30] works. The construction is split into several detailed steps.
Step 1: Construct K 1 , μ 1 , m 1 ( · ) , n 1 , and γ 1 .
Note that P p a T 1 , d i i = 1 k , φ , t , Z , ϵ = . Let
H = { G X 1 : G is open , P p a T 1 , d i i = 1 k , φ , t , Z G , ϵ = 0 } .
Due to the separability of X 1 , it can be concluded that P p a T 1 , d i i = 1 k , φ , t , Z H , ϵ = 0 . Let Z = Z H = Z ( X 1 H ) . For every open set G X 1 , either Z G = (which means G H ) or Z G (in which case, P p a T 1 , d i i = 1 k , φ , t , Z G , ϵ > 0 ). To show this, let us assume that, for some open set G, P p a T 1 , d i i = 1 k , φ , t , Z G , ϵ = 0 ; then
P p a T 1 , d i i = 1 k , φ , t , Z G , ϵ P p a T 1 , d i i = 1 k , φ , t , Z G , ϵ + P p a T 1 , d i i = 1 k , φ , t , Z H , ϵ = 0 .
From this, it can be inferred that G H and then Z G = . Since
P p a T 1 , d i i = 1 k , φ , t , Z , ϵ P p a T 1 , d i i = 1 k , φ , t , Z , ϵ + P p a T 1 , d i i = 1 k , φ , t , Z H , ϵ = P p a T 1 , d i i = 1 k , φ , t , Z , ϵ ,
it follows that
P p a T 1 , d i i = 1 k , φ , t , Z , ϵ = .
By Lemma 3, there exists a finite set K 1 Z ; an integer-valued function m 1 ( x ) on K 1 with the collection { B ¯ m 1 ( x ) a ( x , ϵ ) } x K 1 is disjoint and
x K 1 e s a 1 S a 1 m 1 x φ x ( 1 , 2 ) .
Let μ 1 = x K 1 e s a 1 S a 1 m 1 x φ x δ x , with δ x being the Dirac measure at x. Choose a small γ 1 > 0 so that, for every function z , K 1 X 1 with d 1 ( x , z ( x ) ) γ 1 . Then, for all x K 1 , we have
B ¯ ( z ( x ) , γ 1 ) B ¯ m 1 ( x ) a ( z ( x ) , ϵ ) y K 1 { x } ( B ¯ ( z ( y ) , γ 1 ) B ¯ m 1 ( y ) a ( z ( y ) , ϵ ) = .
In this context and subsequently, B ¯ x , ϵ is defined as the closed ball { y X 1 : d 1 ( x , y ) ϵ } . Given that K 1 Z , for any x K 1 , we have P p a T 1 , d i i = 1 k , φ , t , Z B x , γ 1 4 , ϵ P p a T 1 , d i i = 1 k , φ , t , Z B x , γ 1 4 , ϵ > 0 . Therefore, we can choose a sufficiently large n 1 N such that Z n 1 K 1 , and for all x K 1 , P p a T 1 , d i i = 1 k , φ , t , Z n 1 B x , γ 1 4 , ϵ > 0 .
Step 2: Construct K 2 , μ 2 , m 2 ( · ) , n 2 , and γ 2 . From (20), the ball family B ¯ ( x , γ 1 ) } x K 1 is pairwise disjoint. For every x K 1 , since P p a T 1 , d i i = 1 k , φ , t , Z n 1 B x , γ 1 4 , ϵ > 0 , similar to Step 1, we can build a finite set
E 2 ( x ) Z n 1 B x , γ 1 4
and an integer-valued function
m 2 : E 2 ( x ) N max { m 1 ( y ) : y K 1 } ,
with the following:
(2-a)
For any open set G where G E 2 ( x ) , P p a T 1 , d i i = 1 k , φ , t , Z n 1 G , ϵ > 0 ;
(2-b)
The elements in B ¯ m 2 ( y ) a ( y , ϵ ) y E 2 ( x ) are disjoint, and
μ 1 ( { x } ) < y E 2 ( x ) e s a 1 S a 1 m 2 y φ y < ( 1 + 2 2 ) μ 1 ( { x } ) .
To prove this, fix x K 1 . Let F = Z n 1 B x , γ 1 4 . Define
H x : = { G X 1 : G is open , P p a T 1 , d i i = 1 k , φ , t , F G , ϵ = 0 } .
Set F = F H x . Similar to Step 1, we can prove
P p a T 1 , d i i = 1 k , φ , t , F , ϵ = P p a T 1 , d i i = 1 k , φ , t , F , ϵ > 0 .
Additionally, for all open set G when G F , P p a T 1 , d i i = 1 k , φ , t , F G , ϵ > 0 . As P p a T 1 , d i i = 1 k , φ , s , F , ϵ = , according to Lemma 3, we can find a finite set E 2 ( x ) F , along with a mapping m 2 : E 2 ( x ) N max { m 1 ( y ) : y K 1 } , , for which condition (2-b) holds. Observe that when an open set G has G E 2 ( x ) , then G F . Consequently,
P p a T 1 , d i i = 1 k , φ , t , Z n 1 G , ϵ P p a T 1 , d i i = 1 k , φ , t , F G , ϵ > 0 .
This implies that (2-a) holds.
Given that the family { B ¯ ( x , γ 1 ) } x K 1 is disjoint, for x , x K 1 with x x , E 2 ( x ) E 2 ( x ) = . Let
K 2 = x K 1 E 2 ( x ) , μ 2 = y K 2 e s a 1 S a 1 m 2 y φ y δ y .
Based on (2-b) and (20), the elements of { B ¯ m 2 ( y ) a ( y , ϵ ) } y K 2 are pairwise disjoint. Therefore, we choose 0 < γ 2 < γ 1 4 such that, for any function z : K 2 X 1 satisfying the condition that d 1 ( x , z ( x ) ) < γ 2 for all x K 2 , we obtain
B ¯ ( z ( x ) , γ 2 ) B ¯ m 2 ( x ) a ( z ( x ) , ϵ ) y K 2 { x } B ¯ ( z ( y ) , γ 2 ) B ¯ m 2 ( y ) a ( z ( y ) , ϵ ) =
for all x K 2 . Choose a large n 2 N such that Z n 1 , n 2 K 2 and
P p a T 1 , d i i = 1 k , φ , t , Z n 1 , n 2 B x , γ 2 4 , ϵ > 0
for all x K 2 .
Step 3. Suppose that K i , μ i , m i ( · ) , n i , and γ i are built for i = 1 , , p . Given any function z : K p X 1 satisfying d 1 ( x , z ( x ) ) < γ p for x K p ,
B ¯ ( z ( x ) , γ p ) B ¯ m p ( x ) a ( z ( x ) , ϵ ) y K p { x } B ¯ ( z ( y ) , γ p ) B ¯ m p ( y ) a ( z ( y ) , ϵ ) =
for any x K p , Z n 1 , , n p K p and
P p a T 1 , d i i = 1 k , φ , t , Z n 1 , . . . , n p B x , γ p 4 , ϵ > 0
for any x K p . Now, we construct elements for i = p + 1 just like in Step 2.
Observe that the elements within the collection { B ¯ ( x , γ p ) } x K p are pairwise disjoint. Since P p a T 1 , d i i = 1 k , φ , t , Z n 1 , . . . , n p B x , γ p 4 , ϵ > 0 , for any x K p , following the procedure outlined in Step 2, we can construct a finite set
E p + 1 ( x ) Z n 1 , , n p B ( x , γ p 4 )
and an integer-valued function
m p + 1 : E p + 1 ( x ) N max { m p ( y ) : y K p } ,
with the following properties:
(3-a)
P p a T 1 , d i i = 1 k , φ , t , Z n 1 , . . . , n p G , ϵ > 0 , for any open set G for which
G E p + 1 ( x ) ;
(3-b)
B ¯ m p + 1 ( y ) a ( y , ϵ ) y E p + 1 ( x ) are disjoint and satisfy
μ p ( { x } ) < y E p + 1 ( x ) e s a 1 S a 1 m p + 1 y φ y < ( 1 + 2 p 1 ) μ p ( { x } ) .
Obviously, for different x , x K p , E p + 1 ( x ) E p + 1 ( x ) = . We set
K p + 1 = x K p E p + 1 ( x )
and
μ p + 1 = y K p + 1 e s a 1 S a 1 m p + 1 y φ y δ y .
Using (3-b) and (22), we can see that the sets { B ¯ m p + 1 ( y ) a ( y , ϵ ) } y K p + 1 are disjoint. Therefore, we can choose 0 < γ p + 1 < γ p 4 , and given any function z : K p + 1 X 1 where d 1 ( x , z ( x ) ) < γ p + 1 for all x K p + 1 , we have
B ¯ ( z ( x ) , γ p + 1 ) B ¯ m p + 1 ( x ) a ( z ( x ) , ϵ ) y K p + 1 { x } B ¯ ( z ( y ) , γ p + 1 ) B ¯ m p + 1 ( y ) a ( z ( y ) , ϵ ) = .
for all x K p + 1 . Choose a large n p + 1 N such that Z n 1 , , n p + 1 K p + 1 and for all x K p + 1
P p a T 1 , d i i = 1 k , φ , t , Z n 1 , . . . , n p + 1 B x , γ p + 1 4 , ϵ > 0 .
Just like in the previous steps, we can construct the sequences ( K i ) , ( μ i ) , ( m i ( · ) ) , ( n i ) , and ( γ i ) by induction. Here are some of their basic properties:
(a)
The family F i = { B ¯ ( x , γ i ) : x K i } is disjoint, for any i. Every element in F i + 1 is part of B ¯ ( x , γ i 2 ) for some x K i .
(b)
For any x K i and z B ¯ ( x , γ i ) , we have B ¯ m i ( x ) a ( z , ϵ ) y K i { x } B ¯ ( y , γ i ) = , and
μ i ( B ¯ ( x , γ i ) ) = e s a 1 S a 1 m i x φ x y E i + 1 ( x ) e s a 1 S a 1 m i + 1 y φ y ( 1 + 2 i 1 ) μ i ( B ¯ ( x , γ i ) ) ,
with E i + 1 ( x ) = B ( x , γ i ) K i + 1 .
From the second part of (b), we obtain
μ i ( F i ) μ i + 1 ( F i ) = F F i + 1 : F F i μ i + 1 ( F ) 1 + 2 i 1 μ i ( F i ) , F i F i .
Repeatedly using these inequalities, for any j > i , we have
μ i ( F i ) μ j ( F i ) n = i + 1 j 1 + 2 n μ i ( F i ) C μ i ( F i ) , F i F i ,
and C = n = 1 ( 1 + 2 n ) < .
Denote the limit point of ( μ i ) in the weak-star topology as μ ˜ . Set K = n = 1 i n K i ¯ . The support of μ ˜ lies on K. Moreover, we have K = n = 1 i n K i ¯ p = 1 Z n 1 , . . . , n p ¯ . However, due to the continuity of ϕ , we can prove that p = 1 Z n 1 , . . . , n p = p = 1 Z n 1 , . . . , n p ¯ using Cantor’s diagonal argument. Thus, K is a compact subset of Z. On the contrary, based on Equation (23), we have
e s a 1 S a 1 m i x φ x = μ i ( B ¯ ( x , γ i ) ) μ ˜ B ( x , γ i ) C μ i ( B ¯ ( x , γ i ) ) C e s a 1 S a 1 m i x φ x , x K i .
Specifically,
1 x K 1 μ 1 ( B ( x , γ 1 ) ) μ ˜ ( K ) x K 1 C μ 1 ( B ( x , γ 1 ) ) 2 C .
Observe that K x K i B ¯ ( x , γ i 2 ) . From the first part of (b), for any x K i and z B ¯ ( x , γ i ) , we have
μ ˜ ( B ¯ m i x a ( z , ϵ ) ) μ ˜ ( B ¯ ( x , γ i 2 ) ) C e s a 1 S a 1 m i x φ x .
Moreover, for any z K and i N , there exists an x K i so that z B ¯ ( x , γ i 2 ) . Consequently,
μ ˜ ( B ¯ m i x a ( z , ϵ ) ) C e s a 1 S a 1 m i x φ x .
Set μ = μ ˜ / μ ˜ ( K ) . Then, it can be inferred that μ M ( K ) , and there is a sequence k i for any z K so that μ ˜ ( B k i a ( z , ϵ ) ) C e s a 1 S a 1 k i z φ z / μ ˜ K . It follows that h ¯ φ , μ a T 1 , ϵ s .

5. Conclusions

This paper introduces weighted metric mean dimensions with potential and establishes their corresponding Bowen equations. For the weighted upper metric mean dimension with potential, we derived a crucial relationship showing that mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ is the unique root of the equation mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ β ψ = 0 (Theorem 1). Regarding subsets, we defined the weighted BS metric mean dimension and the weighted packing BS metric mean dimension, and proved that they are the unique roots of the relevant Bowen equations (Theorem 2). Moreover, we established variational principles for the weighted BS metric mean dimension and the weighted packing BS metric mean dimension (Theorems 3 and 4). These variational principles provide a significant connection between the geometric and measure-theoretic aspects of dynamical systems. Our results contribute to the field of dynamical systems in several ways. First, they generalize and extend existing theories related to metric mean dimensions and Bowen’s equations. By introducing the weighted framework, we can better analyze the behavior of dynamical systems with multi-scale structures, which is relevant in many applications such as the study of self-affine carpets and sponges. Second, the variational principles established in this paper offer new perspectives for understanding the relationship between topological and measure-theoretic properties of subsets in dynamical systems. This can potentially lead to further research on the dimension theory of more complex sets and systems. Third, the methods and results presented here may inspire new approaches in related fields, such as fractal geometry and ergodic theory, where the quantification of complexity and the relationship between different types of dimensions are of great importance. For the convenience of readers, we list the abbreviations of the definitions involved in the paper in this table.
SymbolsMeanings
d n a ( x , y ) The weighted metric
B n a ( x , ϵ ) The weighted Bowen ball
u The least integer u
V m The integer part of V m
h ¯ φ , μ a T 1 The weighted upper local measure-theoretical BS entropies of μ
h ̲ φ , μ a T 1 The weighted lower local measure-theoretical BS entropies of μ
mdim ¯ M a X 1 , T 1 , d i i = 1 k , φ The weighted upper metric mean dimension with potential φ
mdim ¯ M , ψ a X 1 , T 1 , d i i = 1 k , φ The weighted ψ -induced upper metric mean dimension with potential φ
mdim ¯ M , Z , T 1 a φ , d i i = 1 k The weighted Bowen upper mean dimension with potential φ on the set Z
upmdim ¯ M , Z , T 1 a φ , d i i = 1 k The weighted u-upper metric mean dimension with potential φ on the set Z
Pmdim ¯ M , Z , T 1 a φ , d i i = 1 k The weighted packing upper mean dimension with potential φ on the set Z
BSmdim ¯ M , Z , T 1 a φ , d i i = 1 k The weighted BS upper mean dimension with respect to φ on the set Z
BSPdim ¯ M , Z , T 1 a φ , d i i = 1 k The weighted packing BS upper mean dimension with respect to φ on the set Z
Wmdim ¯ M , Z , T 1 a φ , d i i = 1 k The weighted BS metric mean dimension with respect to φ on the set Z

Author Contributions

Writing—review & editing, Y.Z. and Y.W.; Supervision, Y.J. All authors have read and agreed to the published version of the manuscript.

Funding

This study was supported by NNSF of China (12101340), the Zhejiang Provincial Natural Science Foundation of China (LQ22A010012), NNSF of China (12201328), and the Ningbo Natural Science Foundation (2022J145). We would like to express our gratitude to Tianyuan Mathematical Center in Southwest China, Sichuan University, and Southwest Jiaotong University for their support and hospitality.

Data Availability Statement

No datasets were generated or analyzed during the current study.

Conflicts of Interest

The authors declare that they have no conflicts on interest.

References

  1. Bedford, T. Crinkly Curves, Markov Partitions and Box Dimension in Self-Similar Sets. Ph.D. Thesis, University of Warwick, Coventry, UK, 1984. [Google Scholar]
  2. Kenyon, R.; Peres, Y. Measures of full dimension on affine-invariant sets. Ergod. Theory Dynam. Syst. 1996, 16, 307–323. [Google Scholar] [CrossRef]
  3. McMullen, C. The Hausdorff dimension of general Sierpiński carpets. Nagoya Math. J. 1984, 96, 1–9. [Google Scholar] [CrossRef]
  4. Feng, D.; Huang, W. Variational principle for weighted topological pressure. J. Math. Pures Appl. 2016, 106, 411–452. [Google Scholar] [CrossRef]
  5. Bowen, R. Hausdorff dimension of quasicircles. Inst. Hautes Études Sci. Publ. Math. 1979, 50, 11–25. [Google Scholar] [CrossRef]
  6. Barreira, L. A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems. Ergod. Theory Dynam. Syst. 1996, 16, 871–927. [Google Scholar] [CrossRef]
  7. Climenhaga, V. Bowen’s equation in the non-uniform setting. Ergod. Theory Dynam. Syst. 2011, 31, 1163–1182. [Google Scholar] [CrossRef]
  8. Barreira, L.; Schmeling, J. Sets of ‘non-typical’ points have full topological entropy and full Hausdorff dimension. Israel J. Math. 2000, 116, 29–70. [Google Scholar] [CrossRef]
  9. Jaerisch, J.; Kesseböhmer, M.; Lamei, S. Induced topological pressure for countable state Markov shifts. Stoch. Dyn. 2014, 14, 1350016. [Google Scholar] [CrossRef]
  10. Xing, Z.; Chen, E. Induced topological pressure for topological dynamical systems. J. Math. Phys. 2015, 56, 022707. [Google Scholar] [CrossRef]
  11. Gromov, M. Topological invariants of dynamical systems and spaces of holomorphic maps. I. Math. Phys. Anal. Geom. 1999, 2, 323–415. [Google Scholar] [CrossRef]
  12. Lindenstrauss, E.; Weiss, B. Mean topological dimension. Israel J. Math. 2000, 115, 1–24. [Google Scholar] [CrossRef]
  13. Gutman, Y. Mean dimension and Jaworski-type theorems. Proc. Lond. Math. Soc. 2015, 111, 831–850. [Google Scholar] [CrossRef]
  14. Gutman, Y. Embedding topological dynamical systems with periodic points in cubical shifts. Ergod. Theory Dynam. Syst. 2017, 37, 512–538. [Google Scholar] [CrossRef]
  15. Gutman, Y.; Lindenstrauss, E.; Tsukamoto, M. Mean dimension of Z k -actions. Geom. Funct. Anal. 2016, 26, 778–817. [Google Scholar] [CrossRef]
  16. Gutman, Y.; Tsukamoto, M. Embedding minimal dynamical systems into Hilbert cubes. Invent. Math. 2020, 221, 113–166. [Google Scholar] [CrossRef]
  17. Lindenstrauss, E.; Tsukamoto, M. Double variational principle for mean dimension. Geom. Funct. Anal. 2019, 29, 1048–1109. [Google Scholar] [CrossRef]
  18. Lindenstrauss, E. Mean dimension, small entropy factors and an embedding theorem. Inst. Hautes Études Sci. Publ. Math. 1999, 89, 227–262. [Google Scholar] [CrossRef]
  19. Tsukamoto, M. Double variational principle for mean dimension with potential. Adv. Math. 2020, 361, 106935. [Google Scholar] [CrossRef]
  20. Gutman, Y.; Śpiewak, A. Around the variational principle for metric mean dimension. Studia Math. 2021, 261, 345–360. [Google Scholar] [CrossRef]
  21. Cheng, D.; Li, Z.; Selmi, B. Upper metric mean dimensions with potential on subsets. Nonlinearity 2021, 34, 852–867. [Google Scholar] [CrossRef]
  22. Chen, E.; Dou, D.; Zheng, D. Variational principles for amenable metric mean dimensions. J. Differ. Equ. 2022, 319, 41–79. [Google Scholar] [CrossRef]
  23. Lindenstrauss, E.; Tsukamoto, M. From rate distortion theory to metric mean dimension: Variational principle. IEEE Trans. Inf. Theory 2018, 64, 3941–3967. [Google Scholar] [CrossRef]
  24. Shi, R. On variational principles for metric mean dimension. IEEE Trans. Inf. Theory 2022, 68, 4282–4288. [Google Scholar] [CrossRef]
  25. Velozo, A.; Velozo, R. Rate distortion theory, metric mean dimension and measure theoretic entropy. arXiv 2017, arXiv:1707.05762. [Google Scholar]
  26. Wang, T. Variational relations for metric mean dimension and rate distortion dimension. Discret. Contin. Dyn. Syst. 2021, 41, 4593–4608. [Google Scholar] [CrossRef]
  27. Yang, R.; Chen, E.; Zhou, X. Bowen’s equations for upper metric mean dimension with potential. Nonlinearity 2022, 35, 4905–4938. [Google Scholar] [CrossRef]
  28. Wang, Y. Weighted mean topological dimension. J. Math. Anal. Appl. 2021, 493, 124524. [Google Scholar] [CrossRef]
  29. Wang, C.; Chen, E. Variational principles for BS dimension of subsets. Dyn. Syst. 2012, 27, 359–385. [Google Scholar] [CrossRef]
  30. Feng, D.; Huang, W. Variational principles for topological entropies of subsets. J. Funct. Anal. 2012, 263, 2228–2254. [Google Scholar] [CrossRef]
  31. Ji, Y.; Wang, Y. Billingsley type theorem for weighted Bowen entropy. Results Math. 2022, 77, 9. [Google Scholar] [CrossRef]
  32. Federer, H. Geometric Measure Theory; Springer-Verlag New York, Inc.: New York, NY, USA, 1969; Volume 153, p. xiv+676. [Google Scholar]
  33. Joyce, H.; Preiss, D. On the existence of subsets of finite positive packing measure. Mathematika 1995, 42, 15–24. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zhang, Y.; Ji, Y.; Wang, Y. Bowen’s Equations for Weighted Upper Metric Mean Dimension with Potential. Mathematics 2025, 13, 1271. https://doi.org/10.3390/math13081271

AMA Style

Zhang Y, Ji Y, Wang Y. Bowen’s Equations for Weighted Upper Metric Mean Dimension with Potential. Mathematics. 2025; 13(8):1271. https://doi.org/10.3390/math13081271

Chicago/Turabian Style

Zhang, Yuanyuan, Yong Ji, and Yunping Wang. 2025. "Bowen’s Equations for Weighted Upper Metric Mean Dimension with Potential" Mathematics 13, no. 8: 1271. https://doi.org/10.3390/math13081271

APA Style

Zhang, Y., Ji, Y., & Wang, Y. (2025). Bowen’s Equations for Weighted Upper Metric Mean Dimension with Potential. Mathematics, 13(8), 1271. https://doi.org/10.3390/math13081271

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop