A Multi-Scale Interpretability-Based PET-CT Tumor Segmentation Method
Abstract
:1. Introduction
2. Related Work
- Proposing a Multi-Scale Interpretability-Based Segmentation Model: This model not only significantly improves segmentation performance but also provides valuable interpretability information for the decision-making process of the segmentation network.
- Introducing an Interpretability Loss Function: This loss function provides clear supervisory signals during training, encouraging the network to focus on informative features and further enhancing segmentation performance.
3. Methods
3.1. Segmentation Backbone
3.2. The Network Structure of MSIM
3.2.1. Multi-Scale Feature Processing Module
3.2.2. Mask Generation Module
3.3. Loss Functions
3.3.1. Segmentation Backbone Loss
3.3.2. Interpretability Loss
3.3.3. Total Loss Function
4. Experimental Setup
4.1. Dataset
4.2. Experiment Details
4.3. Evaluation Metrics
4.3.1. Dice Similarity Coefficient
4.3.2. Classification Error
4.3.3. Volume Error
4.3.4. Volume Overlap Error
4.3.5. Hausdorff Distance
5. Experimental Results and Analysis
5.1. Ablation Experiment
5.2. Comparison Experiment
5.3. Visualization Experiments
5.3.1. Mask Visualization
5.3.2. LIME Visualization
5.4. Perturbation Experiments
6. Discussion
6.1. Results Analysis
6.2. Limitations and Future Work
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.E. Pet in lung cancer. J. Nucl. Med. 1999, 40, 814–820. [Google Scholar] [PubMed]
- Khalaf, M.; Abdel-Nabi, H.; Baker, J.; Shao, Y.; Lamonica, D.; Gona, J. Relation between nodule size and 18 f-fdg-pet suv for malignant and benign pulmonary nodules. J. Hematol. Oncol. 2008, 1, 1–8. [Google Scholar] [CrossRef]
- Grgic, A.; Yüksel, Y.; Gröschel, A.; Schäfers, H.-J.; Sybrecht, G.W.; Kirsch, C.M.; Hellwig, D. Risk stratification of solitary pulmonary nodules by means of pet using 18 f-fluorodeoxyglucose and suv quantification. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 1087–1094. [Google Scholar] [CrossRef]
- Li, L.; Lu, W.; Tan, Y.; Tan, S. Variational pet/ct tumor co-segmentation integrated with pet restoration. IEEE Trans. Radiat. Plasma Med. Sci. 2019, 4, 37–49. [Google Scholar] [CrossRef]
- Xu, L.; Tetteh, G.; Lipkova, J.; Zhao, Y.; Li, H.; Christ, P.; Piraud, M.; Buck, A.; Shi, K.; Menze, B.H. Automated whole-body bone lesion detection for multiple myeloma on 68ga-pentixafor pet/ct imaging using deep learning methods. Contrast Media Mol. Imaging 2018, 2018, 2391925. [Google Scholar] [CrossRef]
- Zhong, Z.; Kim, Y.; Zhou, L.; Plichta, K.; Allen, B.; Buatti, J.; Wu, X. 3D fully convolutional networks for co-segmentation of tumors on pet-ct images. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 228–231. [Google Scholar]
- Mall, P.K.; Singh, P.K.; Srivastav, S.; Narayan, V.; Paprzycki, M.; Jaworska, T.; Ganzha, M. A comprehensive review of deep neural networks for medical image processing: Recent developments and future opportunities. Healthc. Anal. 2023, 4, 100216. [Google Scholar] [CrossRef]
- Rahaman, M.A.; Chen, J.; Fu, Z.; Lewis, N.; Iraji, A.; Calhoun, V.D. Multi-modal deep learning of functional and structural neuroimaging and genomic data to predict mental illness. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual Conference, 1–5 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 3267–3272. [Google Scholar]
- Li, L.; Zhao, X.; Lu, W.; Tan, S. Deep learning for variational multimodality tumor segmentation in pet/ct. Neurocomputing 2020, 392, 277–295. [Google Scholar] [CrossRef]
- Van der Velden, B.H.; Kuijf, H.J.; Gilhuijs, K.G.; Viergever, M.A. Explainable artificial intelligence (xai) in deep learning-based medical image analysis. Med. Image Anal. 2022, 79, 102470. [Google Scholar] [CrossRef]
- Tseng, L.-Y.; Huang, L.-C. An adaptive thresholding method for automatic lung segmentation in ct images. In Proceedings of the AFRICON 2009, Nairobi, Kenya, 23–25 September 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–5. [Google Scholar]
- El Hassani, A.; Skourt, B.A.; Majda, A. Efficient lung ct image segmentation using mathematical morphology and the region growing algorithm. In Proceedings of the 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS), Taza, Morocco, 26–27 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Chandrashekar, N.; Natraj, K. Detection of lung cancer by canny edge detector for performance in area, latency. In Proceedings of the 2018 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Msyuru, India, 14–15 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 690–696. [Google Scholar]
- Yu, K.; Chen, X.; Shi, F.; Zhu, W.; Zhang, B.; Xiang, D. A novel 3d graph cut based co-segmentation of lung tumor on pet-ct images with gaussian mixture models. In Medical Imaging 2016: Image Processing; SPIE: Bellingham, WA, USA, 2016; Volume 9784, pp. 787–793. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings Part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Milletari, F.; Navab, N.; Ahmadi, S.-A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 565–571. [Google Scholar]
- Kumar, A.; Fulham, M.; Feng, D.; Kim, J. Co-learning feature fusion maps from pet-ct images of lung cancer. IEEE Trans. Med. Imaging 2019, 39, 204–217. [Google Scholar] [CrossRef]
- Fu, X.; Bi, L.; Kumar, A.; Fulham, M.; Kim, J. Multimodal spatial attention module for targeting multimodal pet-ct lung tumor segmentation. IEEE J. Biomed. Health Inform. 2021, 25, 3507–3516. [Google Scholar] [PubMed]
- Huang, Z.; Zou, S.; Wang, G.; Chen, Z.; Shen, H.; Wang, H.; Zhang, N.; Zhang, L.; Yang, F.; Wang, H.; et al. Isa-net: Improved spatial attention network for pet-ct tumor segmentation. Comput. Methods Programs Biomed. 2022, 226, 107129. [Google Scholar]
- Zhao, X.; Li, L.; Lu, W.; Tan, S. Tumor co-segmentation in pet/ct using multi-modality fully convolutional neural network. Phys. Med. Biol. 2018, 64, 015011. [Google Scholar]
- Diao, Z.; Jiang, H.; Han, X.-H.; Yao, Y.-D.; Shi, T. Efnet: Evidence fusion network for tumor segmentation from pet-ct volumes. Phys. Med. Biol. 2021, 66, 205005. [Google Scholar]
- Murdoch, W.J.; Singh, C.; Kumbier, K.; Abbasi-Asl, R.; Yu, B. Definitions, methods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci. USA 2019, 116, 22071–22080. [Google Scholar]
- Dabkowski, P.; Gal, Y. Real time image saliency for black box classifiers. Adv. Neural Inf. Process. Syst. 2017, 30, 6970–6979. [Google Scholar]
- Li, K.; Wu, Z.; Peng, K.-C.; Ernst, J.; Fu, Y. Tell me where to look: Guided attention inference network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 9215–9223. [Google Scholar]
- Fong, R.C.; Vedaldi, A. Interpretable explanations of black boxes by meaningful perturbation. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3429–3437. [Google Scholar]
- Kang, S.; Chen, Z.; Li, L.; Lu, W.; Qi, X.S.; Tan, S. Learning feature fusion via an interpretation method for tumor segmentation on pet/ct. Appl. Soft Comput. 2023, 148, 110825. [Google Scholar] [CrossRef]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Wang, L.; Lee, C.-Y.; Tu, Z.; Lazebnik, S. Training deeper convolutional networks with deep supervision. arXiv 2015, arXiv:1505.02496. [Google Scholar]
- Moradi, R.; Berangi, R.; Minaei, B. A survey of regularization strategies for deep models. Artif. Intell. Rev. 2020, 53, 3947–3986. [Google Scholar]
- Gatidis, S.; Hepp, T.; Früh, M.; La Fougère, C.; Nikolaou, K.; Pfannenberg, C.; Schölkopf, B.; Künstner, T.; Cyran, C.; Rubin, D. A whole-body fdg-pet/ct dataset with manually annotated tumor lesions. Sci. Data 2022, 9, 601. [Google Scholar]
- Li, L.; Wang, J.; Lu, W.; Tan, S. Simultaneous tumor segmentation, image restoration, and blur kernel estimation in pet using multiple regularizations. Comput. Vis. Image Underst. 2017, 155, 173–194. [Google Scholar] [PubMed]
- Hatt, M.; Le Rest, C.C.; Turzo, A.; Roux, C.; Visvikis, D. A fuzzy locally adaptive bayesian segmentation approach for volume determination in pet. IEEE Trans. Med. Imaging 2009, 28, 881–893. [Google Scholar] [PubMed]
- Dewalle-Vignion, A.-S.; Betrouni, N.; Lopes, R.; Huglo, D.; Stute, S.; Vermandel, M. A new method for volume segmentation of pet images, based on possibility theory. IEEE Trans. Med. Imaging 2010, 30, 409–423. [Google Scholar]
- Christ, P.F.; Ettlinger, F.; Grün, F.; Elshaera, M.E.A.; Lipkova, J.; Schlecht, S.; Ahmaddy, F.; Tatavarty, S.; Bickel, M.; Bilic, P.; et al. Automatic liver and tumor segmentation of ct and mri volumes using cascaded fully convolutional neural networks. arXiv 2017, arXiv:1702.05970. [Google Scholar]
- Aydin, O.U.; Taha, A.A.; Hilbert, A.; Khalil, A.A.; Galinovic, I.; Fiebach, J.B.; Frey, D.; Madai, V.I. An evaluation of performance measures for arterial brain vessel segmentation. BMC Med. Imaging 2021, 21, 1–12. [Google Scholar]
- Palatnik de Sousa, I.; Maria Bernardes Rebuzzi Vellasco, M.; Costa da Silva, E. Local interpretable model-agnostic explanations for classification of lymph node metastases. Sensors 2019, 19, 2969. [Google Scholar] [CrossRef]
Layer Name | Input Size | Output Size | Kernel Width | Stride |
---|---|---|---|---|
1 | 1 | |||
3 | 1 | |||
1 | 1 | |||
3 | 1 | |||
1 | 1 | |||
3 | 1 | |||
1 | 1 | |||
3 | 1 |
Layer Name | Input Size | Output Size | Kernel Width | Stride |
---|---|---|---|---|
3 | 1 | |||
3 | 1 | |||
3 | 1 | |||
3 | 1 | |||
- | - | - |
Dataset | Methods | DSC (%) | CE (%) | VE (%) | VOE (%) | HD (mm) |
---|---|---|---|---|---|---|
UNet | 80.76 | 39.74 | 14.11 | 31.20 | 21.61 | |
Melanoma | UNet + MSIM | 81.07 | 39.03 | 13.14 | 30.83 | 21.36 |
82.36 | 36.68 | 13.13 | 29.01 | 21.09 | ||
Lymphoma | UNet | 81.56 | 38.18 | 13.58 | 30.88 | 21.17 |
UNet + MSIM | 82.88 | 35.42 | 12.17 | 28.29 | 20.72 | |
83.18 | 34.74 | 11.62 | 27.84 | 20.64 | ||
Lung cancer | UNet | 82.44 | 36.74 | 13.02 | 29.11 | 21.48 |
UNet + MSIM | 83.08 | 34.66 | 11.34 | 27.93 | 20.71 | |
84.80 | 31.88 | 10.42 | 25.43 | 19.84 |
Dataset | Methods | DSC (%) | CE (%) | VE (%) | VOE (%) | HD (mm) |
---|---|---|---|---|---|---|
Melanoma | MSAM [19] | 79.53 | 42.63 | 16.15 | 32.89 | 21.94 |
ISANet [20] | 80.25 | 40.91 | 15.48 | 31.70 | 21.68 | |
EFNet [22] | 80.44 | 40.27 | 14.79 | 31.38 | 21.64 | |
LFFI [27] | 80.90 | 37.57 | 13.51 | 29.62 | 21.12 | |
Ours | 82.36 | 36.68 | 13.13 | 29.01 | 21.09 | |
Lymphoma | MSAM [19] | 80.09 | 41.82 | 15.76 | 32.25 | 21.75 |
ISANet [20] | 80.63 | 38.17 | 13.32 | 30.10 | 21.29 | |
EFNet [22] | 81.59 | 38.25 | 13.84 | 30.09 | 21.73 | |
LFFI [27] | 81.91 | 35.33 | 12.70 | 28.21 | 20.86 | |
Ours | 83.18 | 34.74 | 11.62 | 27.84 | 20.64 | |
Lung cancer | MSAM [19] | 81.16 | 39.19 | 14.37 | 30.70 | 21.48 |
ISANet [20] | 82.66 | 35.76 | 12.21 | 28.50 | 20.77 | |
EFNet [22] | 82.68 | 38.63 | 14.22 | 31.98 | 21.72 | |
LFFI [27] | 82.87 | 35.46 | 11.89 | 28.29 | 20.75 | |
Ours | 84.80 | 31.88 | 10.42 | 25.43 | 19.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Wang, Y.; Ma, Y.; Yang, H. A Multi-Scale Interpretability-Based PET-CT Tumor Segmentation Method. Mathematics 2025, 13, 1139. https://doi.org/10.3390/math13071139
Yang D, Wang Y, Ma Y, Yang H. A Multi-Scale Interpretability-Based PET-CT Tumor Segmentation Method. Mathematics. 2025; 13(7):1139. https://doi.org/10.3390/math13071139
Chicago/Turabian StyleYang, Dangui, Yetong Wang, Yimeng Ma, and Houqun Yang. 2025. "A Multi-Scale Interpretability-Based PET-CT Tumor Segmentation Method" Mathematics 13, no. 7: 1139. https://doi.org/10.3390/math13071139
APA StyleYang, D., Wang, Y., Ma, Y., & Yang, H. (2025). A Multi-Scale Interpretability-Based PET-CT Tumor Segmentation Method. Mathematics, 13(7), 1139. https://doi.org/10.3390/math13071139