Second-Order Neutral Differential Equations with Sublinear Neutral Terms: New Criteria for the Oscillation
Abstract
:1. Introduction
- [N1]
- and are quotient of odd positive integers;
- [N2]
- , ;
- [N3]
- , and is not identically zero for large s;
- [N4]
- , , , , , and .
- (1)
- By using comparison theory,
- (2)
- By using the Riccati transformation,
2. Main Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hale, J.K. Functional Differential Equations; Springer: New York, NY, USA, 1971. [Google Scholar]
- Jadlovska, I.; Dzurina, J.; Graef, J.R.; Grace, S.R. Sharp oscillation theorem for fourth-order linear delay differential equations. J. Inequal. Appl. 2022, 2022, 122. [Google Scholar] [CrossRef]
- Alzabut, J.; Grace, S.R.; Chhatria, G.N. New oscillation results for higher order nonlinear differential equations with a nonlinear neutral terms. J. Math. Comput. Sci. 2023, 28, 294–305. [Google Scholar] [CrossRef]
- Moaaz, O.; El-Nabulsi, R.A.; Muhib, A.; Elagan, S.K.; Zakarya, M. New improved results for oscillation of fourth-order neutral differential equations. Mathematics 2021, 9, 2388. [Google Scholar] [CrossRef]
- Prabaharan, N.; Thandapani, E.; Tunc, E. Asymptotic behavior of semi-canonical third-order delay differential equations with a superlinear neutral term. Palestine J. Math. 2023, 12, 473–483. [Google Scholar]
- Sugie, J.; Ishihara, K. Philos-type oscillation criteria for linear differential equations with impulsive effects. J. Math. Anal. Appl. 2019, 470, 911–930. [Google Scholar] [CrossRef]
- Luo, D. On oscillation of higher-order advanced trinomial differential equations. Adv. Differ. Equ. 2021, 2021, 144. [Google Scholar] [CrossRef]
- Grace, S.R.; Graef, J.R.; Jadlovska, I. Oscillatory behavior of second order nonlinear delay differential equations with positive and negative neutral terms. Differ. Equ. Appl. 2020, 12, 201–211. [Google Scholar] [CrossRef]
- Santra, S.S.; Khedher, K.M.; Moaaz, O.; Muhib, A.; Yao, S.-W. Second-order impulsive delay differential systems: Necessary and sufficient conditions for oscillatory or asymptotic behavior. Symmetry 2021, 13, 722. [Google Scholar] [CrossRef]
- Baculikova, B. Oscillatory behavior of the second order noncanonical differential equations. Electron. J. Qual. Theory Differ. Equ. 2019, 2019, 106224. [Google Scholar] [CrossRef]
- Jadlovska, I. Iterative oscillation results for second-order differential equations with advanced argument. Electron. J. Differ. Equ. 2017, 2017, 1–11. [Google Scholar]
- Agarwal, R.P.; Zhang, C.; Li, T. Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 2016, 274, 178–181. [Google Scholar] [CrossRef]
- Bohner, M.; Grace, S.R.; Jadlovska, I. Oscillation criteria for second-order neutral delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2017, 2017, 60. [Google Scholar] [CrossRef]
- Sun, Y.G.; Meng, F.W. Note on the paper of Dzurina and Stavroulakis: “Oscillation criteria for second-order delay differential equations”. [Appl. Math. Comput. 140 (2003) 445–453]. Appl. Math. Comput. 2006, 174, 1634–1641. [Google Scholar]
- Xu, R.; Meng, F. Some new oscillation criteria for second order quasi-linear neutral delay differential equations. Appl. Math. Comput. 2006, 182, 797–803. [Google Scholar] [CrossRef]
- Baculikova, B.; Dzurina, J. Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 2011, 62, 4472–4478. [Google Scholar] [CrossRef]
- Grace, S.R.; Dzurina, J.; Jadlovska, I.; Li, T. An improved approach for studying oscillation of second-order neutral delay differential equations. J. Ineq. Appl. 2018, 193, 2018. [Google Scholar] [CrossRef]
- Koplatadze, R.; Kvinikadze, G.; Stavroulakis, I.P. Oscillation of second order linear delay differential equations. Funct. Differ. Equ. 2000, 7, 121–145. [Google Scholar]
- Moaaz, O.; Ramos, H.; Awrejcewicz, J. Second-order Emden–Fowler neutral differential equations: A new precise criterion for oscillation. Appl. Math. Lett. 2021, 118, 107172. [Google Scholar] [CrossRef]
- Moaaz, O.; Anis, M.; Baleanu, D.; Muhib, A. More effective criteria for oscillation of second-order differential equations with neutral arguments. Mathematics 2020, 8, 986. [Google Scholar] [CrossRef]
- Santra, S.S.; Sethi, A.K.; Moaaz, O.; Khedher, K.M.; Yao, S.W. New Oscillation Theorems for Second-Order Differential Equations with Canonical and Non-Canonical Operator via Riccati Transformation. Mathematics 2021, 9, 1111. [Google Scholar] [CrossRef]
- Hale, J. Theory of Functional Differential Equations; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1977. [Google Scholar]
- Kiguradze, I.; Chanturia, T. Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Mathematics and Its Applications; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Zhang, S.-Y.; Wang, Q.-R. Oscillation of second-order nonlinear neutral dynamic equations on time scales. Appl. Math. Comput. 2010, 216, 2837–2848. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arab, M.; Zaway, H.; Muhib, A.; Elagan, S.K. Second-Order Neutral Differential Equations with Sublinear Neutral Terms: New Criteria for the Oscillation. Mathematics 2025, 13, 903. https://doi.org/10.3390/math13060903
Arab M, Zaway H, Muhib A, Elagan SK. Second-Order Neutral Differential Equations with Sublinear Neutral Terms: New Criteria for the Oscillation. Mathematics. 2025; 13(6):903. https://doi.org/10.3390/math13060903
Chicago/Turabian StyleArab, Meraa, Hajer Zaway, Ali Muhib, and Sayed K. Elagan. 2025. "Second-Order Neutral Differential Equations with Sublinear Neutral Terms: New Criteria for the Oscillation" Mathematics 13, no. 6: 903. https://doi.org/10.3390/math13060903
APA StyleArab, M., Zaway, H., Muhib, A., & Elagan, S. K. (2025). Second-Order Neutral Differential Equations with Sublinear Neutral Terms: New Criteria for the Oscillation. Mathematics, 13(6), 903. https://doi.org/10.3390/math13060903