A Study of Geodesic (E, F)-Preinvex Functions on Riemannian Manifolds
Abstract
:1. Introduction
2. Preliminaries
3. -Invex Sets and -Preinvex Functions
4. Geodesic -Invex Sets and -Preinvex Functions on Riemannian Manifolds
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, G.; He, Y. Generalized convexity of the inverse hyperbolic cosine function. Miskolc Math. Notes 2018, 19, 873–881. [Google Scholar]
- Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequationes Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Liao, J.; Du, T. On Some Characterizations of Sub-b-s-Convex Functions. Filomat 2016, 30, 3885–3895. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. Res. Rep. Collect. 2009, 12. [Google Scholar]
- Alizadeh, M.H.; Makó, J. On e-convexity. Miskolc Math. Notes 2022, 23, 51–60. [Google Scholar] [CrossRef]
- Kadakal, M.; İşcan, İ. Exponential type convexity and some related inequalities. J. Inequalities Appl. 2020, 2020, 82. [Google Scholar] [CrossRef]
- Almutairi, O.; Kiliçman, A. Generalized Fejér–Hermite–Hadamard type via generalized (h − m)-convexity on fractal sets and applications. Chaos Solitons Fractals 2021, 147, 110938. [Google Scholar] [CrossRef]
- Pini, R. Convexity along curves and invexity. Optimization 1994, 29, 301–309. [Google Scholar] [CrossRef]
- Youness, E.A. E-convex sets, E-convex functions, and E-convex programming. J. Optim. Theory Appl. 1999, 102, 439–450. [Google Scholar] [CrossRef]
- Chen, X. Some properties of semi-E-convex functions. J. Math. Anal. Appl. 2002, 275, 251–262. [Google Scholar] [CrossRef]
- Yang, X.M. On E-convex sets, E-convex functions, and E-convex programming. J. Optim. Theory Appl. 2001, 109, 699. [Google Scholar] [CrossRef]
- Jian, J.B. On (E, F) generalized convexity. Int. J. Math. Sci. 2003, 2, 121–132. [Google Scholar]
- Saleh, W. Hermite–Hadamard type inequality for (E, F)-convex functions and geodesic (E, F)-convex functions. RAIRO Oper. Res. 2022, 56, 4181–4189. [Google Scholar] [CrossRef]
- Udriste, C. Convex Functions and Optimization Methods on Riemannian Manifolds; Springer Science & Business Media: Dordrecht, The Netherlands, 2013; Volume 297. [Google Scholar]
- Rapcsák, T. Smooth Nonlinear Optimization in Rn; Springer Science & Business Media: New York, NY, USA, 2013; Volume 19. [Google Scholar]
- Iqbal, A.; Ali, S.; Ahmad, I. On geodesic E-convex sets, geodesic E-convex functions and E-epigraphs. J. Optim. Theory Appl. 2012, 155, 239–251. [Google Scholar] [CrossRef]
- Ansari, Q.H.; Islam, M.; Yao, J.C. Nonsmooth convexity and monotonicity in terms of a bifunction on Riemannian manifolds. J. Nonlinear Convex Anal. 2017, 18, 743–762. [Google Scholar]
- Khan, M.A.; Ahmad, I.; Al-Solamy, F.R. Geodesic r-preinvex functions on Riemannian manifolds. J. Inequalities Appl. 2014, 2014, 144. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Ahmad, I.; Iqbal, A.; Ali, S. Geodesic G-invex sets and semistrictly geodesic η-preinvex functions. Optimization 2012, 61, 1169–1174. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Ahmad, I.; Iqbal, A.; Ali, S. Generalized invex sets and preinvex functions on Riemannian manifolds. Taiwan. J. Math. 2012, 16, 1719–1732. [Google Scholar] [CrossRef]
- Chen, S.L.; Huang, N.J.; O’Regan, D. Geodesic B-preinvex functions and multiobjective optimization problems on Riemannian manifolds. J. Appl. Math. 2014, 2014, 524698. [Google Scholar]
- Mititelu, S. Generalized invexity and vector optimization on differential manifolds. Differ. Geom. Dyn. Syst. 2001, 3, 21–31. [Google Scholar]
- Kılıçman, A.; Saleh, W. On geodesic strongly E-convex sets and geodesic strongly E-convex functions. J. Inequalities Appl. 2015, 2015, 297. [Google Scholar] [CrossRef]
- Barani, A.; Pouryayevali, M.R. Invex sets and preinvex functions on Riemannian manifolds. J. Math. Anal. Appl. 2007, 328, 767–779. [Google Scholar] [CrossRef]
- Zhou, L.W.; Huang, N.J. Roughly geodesic B-invex and optimization problem on Hadamard manifold. Taiwan. J. Math. 2013, 17, 833–855. [Google Scholar] [CrossRef]
- Ahmad, I.; Khan, M.A.; A. Ishan, A. Generalized geodesic convexity on Riemannian manifolds. Mathematics 2019, 7, 547. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhter, E.; Bilal, M.; Ali, M. A Study of Geodesic (E, F)-Preinvex Functions on Riemannian Manifolds. Mathematics 2025, 13, 896. https://doi.org/10.3390/math13060896
Akhter E, Bilal M, Ali M. A Study of Geodesic (E, F)-Preinvex Functions on Riemannian Manifolds. Mathematics. 2025; 13(6):896. https://doi.org/10.3390/math13060896
Chicago/Turabian StyleAkhter, Ehtesham, Mohd Bilal, and Musavvir Ali. 2025. "A Study of Geodesic (E, F)-Preinvex Functions on Riemannian Manifolds" Mathematics 13, no. 6: 896. https://doi.org/10.3390/math13060896
APA StyleAkhter, E., Bilal, M., & Ali, M. (2025). A Study of Geodesic (E, F)-Preinvex Functions on Riemannian Manifolds. Mathematics, 13(6), 896. https://doi.org/10.3390/math13060896