A Stochastic Continuous-Time Markov Chain Approach for Modeling the Dynamics of Cholera Transmission: Exploring the Probability of Disease Persistence or Extinction
Abstract
:1. Introduction
2. Model Formulation
Reproduction Number
3. Formulation of Continuous-Time Markov Chain (CTMC) Model
3.1. The Multitype Branching Process
- The behavior of each infectious individual is independent from that of other infectious individuals.
- Both the probability of recovery and the probability of transmitting an infection are the same for each infectious individual.
- The susceptible population is sufficiently large.
3.2. Stochastic Threshold for CTMC Model
4. Monte Carlo Sampling Technique (Sensitivity Analysis)
Analysis of the PRCC Results
5. Numerical Simulations
Probability of Cholera Disease Extinction or Outbreak
Parameter | Base Line Value | Reference |
---|---|---|
10 day−1 | [56] | |
1.066 day−1 | Assumed | |
0.005 year−1 | [57] | |
0.189 day−1 | [58] | |
0.2143 day−1 | [59] | |
500 cells/day | Assumed | |
500 cells/day | [57] | |
20 cell/ml per day | [60] | |
20 cell/ml per day | Assumed | |
12 cells mL−1 d−1 per vector | [61] | |
0.4 | Assumed | |
d | 0.015 | [56] |
0.14 per day | [62] | |
0.5 per day | [62] | |
q | 0.7 | [63] |
r | 0.3 | [63] |
0.8 | Assumed | |
0.1 | Assumed | |
0.9 | Assumed | |
0.4 day−1 | [64] | |
0.4 day−1 | Assumed |
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ahmad, S.; ur Rahman, M.; Arfan, M. On the analysis of semi-analytical solutions of Hepatitis B epidemic model under the Caputo-Fabrizio operator. Chaos Solitons Fractals 2021, 146, 110892. [Google Scholar] [CrossRef]
- Colwell, R.R. Global climate and infectious disease: The cholera paradigm. Science 1996, 274, 2025–2031. [Google Scholar] [CrossRef] [PubMed]
- Keiding, J.; World Health Organization. Division of Vector Biology and Control. In The House-Fly: Biology and Control; Technical report; World Health Organization: Geneva, Switzerland, 1986. [Google Scholar]
- Graczyk, T.K.; Knight, R.; Gilman, R.H.; Cranfield, M.R. The role of non-biting flies in the epidemiology of human infectious diseases. Microbes Infect. 2001, 3, 231–235. [Google Scholar] [CrossRef]
- Greenberg, B. Flies and Disease: II. Biology and Disease Transmission; Princeton University Press: Princeton, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Das, P.; Mukherjee, D.; Sarkar, A. Study of a carrier dependent infectious disease—cholera. J. Biol. Syst. 2005, 13, 233–244. [Google Scholar] [CrossRef]
- Fotedar, R. Vector potential of houseflies (Musca domestica) in the transmission of Vibrio cholerae in India. Acta Trop. 2001, 78, 31–34. [Google Scholar] [CrossRef]
- World Health Organization. Cholera vaccines: WHO position paper—August 2017. Wkly. Epidemiol. Rec. 2017, 92, 477–498. [Google Scholar]
- Losonsky, G.A.; Lim, Y.; Motamedi, P.; Comstock, L.E.; Johnson, J.A.; Morris, J.G., Jr.; Tacket, C.O.; Kaper, J.B.; Levine, M.M. Vibriocidal antibody responses in North American volunteers exposed to wild-type or vaccine Vibrio cholerae O139: Specificity and relevance to immunity. Clin. Diagn. Lab. Immunol. 1997, 4, 264–269. [Google Scholar] [CrossRef]
- Charnley, G.E.; Kelman, I.; Murray, K.A. Drought-related cholera outbreaks in Africa and the implications for climate change: A narrative review. Pathog. Glob. Health 2022, 116, 3–12. [Google Scholar] [CrossRef]
- Hailegiorgis, A.; Crooks, A.T. Agent-based modeling for humanitarian issues: Disease and refugee camps. In Proceedings of the Computational Social Science Society of America Conference, Santa Fe, NM, USA, 18–21 September 2012. [Google Scholar]
- Chowdhury, F.; Rahman, M.A.; Begum, Y.A.; Khan, A.I.; Faruque, A.S.; Saha, N.C.; Baby, N.I.; Malek, M.; Kumar, A.R.; Svennerholm, A.M.; et al. Impact of rapid urbanization on the rates of infection by Vibrio cholerae O1 and enterotoxigenic Escherichia coli in Dhaka, Bangladesh. PLoS Negl. Trop. Dis. 2011, 5, e999. [Google Scholar] [CrossRef]
- Huppert, A.; Katriel, G. Mathematical modelling and prediction in infectious disease epidemiology. Clin. Microbiol. Infect. 2013, 19, 999–1005. [Google Scholar] [CrossRef]
- Khan, M.A.; Ullah, S.; Ching, D.; Khan, I.; Ullah, S.; Islam, S.; Gul, T. A mathematical study of an epidemic disease model spread by rumors. J. Comput. Theor. Nanosci. 2016, 13, 2856–2866. [Google Scholar] [CrossRef]
- Ameen, I.; Baleanu, D.; Ali, H.M. An efficient algorithm for solving the fractional optimal control of SIRV epidemic model with a combination of vaccination and treatment. Chaos Solitons Fractals 2020, 137, 109892. [Google Scholar] [CrossRef]
- Khan, T.; Ahmad, S.; Zaman, G. Modeling and qualitative analysis of a hepatitis B epidemic model. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 103139. [Google Scholar] [CrossRef]
- Allen, L.J.; Burgin, A.M. Comparison of deterministic and stochastic SIS and SIR models in discrete time. Math. Biosci. 2000, 163, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Maliyoni, M.; Chirove, F.; Gaff, H.D.; Govinder, K.S. A stochastic tick-borne disease model: Exploring the probability of pathogen persistence. Bull. Math. Biol. 2017, 79, 1999–2021. [Google Scholar] [CrossRef]
- Maliyoni, M. Probability of disease extinction or outbreak in a stochastic epidemic model for west nile virus dynamics in birds. Acta Biotheor. 2021, 69, 91–116. [Google Scholar] [CrossRef]
- Roberts, M.; Andreasen, V.; Lloyd, A.; Pellis, L. Nine challenges for deterministic epidemic models. Epidemics 2015, 10, 49–53. [Google Scholar] [CrossRef]
- Marwa, Y.M.; Mbalawata, I.S.; Mwalili, S.; Charles, W.M. Stochastic dynamics of cholera epidemic model: Formulation, analysis and numerical simulation. J. Appl. Math. Phys. 2019, 7, 1097–1125. [Google Scholar] [CrossRef]
- Renard, P.; Alcolea, A.; Ginsbourger, D. Stochastic versus deterministic approaches. In Environmental Modelling: Finding Simplicity in Complexity; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 133–149. [Google Scholar] [CrossRef]
- Ji, C.; Jiang, D.; Shi, N. The behavior of an SIR epidemic model with stochastic perturbation. Stoch. Anal. Appl. 2012, 30, 755–773. [Google Scholar] [CrossRef]
- Bibi Ruhomally, Y.; Zaid Dauhoo, M.; Dumas, L. Stochastic modelling of marijuana use in Washington: Pre- and post-Initiative-502 (I-502). IMA J. Appl. Math. 2022, 87, 1121–1150. [Google Scholar] [CrossRef]
- Allen, L.J. A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis. Infect. Dis. Model. 2017, 2, 128–142. [Google Scholar] [CrossRef] [PubMed]
- Anteneh, L.M.; Kakaï, R.G. Mathematical modelling and analysis of cholera dynamics via vector transmission. Commun. Math. Biol. Neurosci. 2024, 2024, 74. [Google Scholar] [CrossRef]
- Akhi, A.A.; Kamrujjaman, M.; Nipa, K.F.; Khan, T. A continuous-time Markov chain and stochastic differential equations approach for modeling malaria propagation. Healthc. Anal. 2023, 4, 100239. [Google Scholar] [CrossRef]
- Allen, L.J.; Lahodny, G.E., Jr. Extinction thresholds in deterministic and stochastic epidemic models. J. Biol. Dyn. 2012, 6, 590–611. [Google Scholar] [CrossRef]
- Nipa, K.F.; Allen, L.J. The Effect of Demographic Variability and Periodic Fluctuations on Disease Outbreaks in a Vector–Host Epidemic Model. Infect. Dis. Our Planet 2021, 15–35. [Google Scholar] [CrossRef]
- Bacaër, N.; Ait Dads, E.H. On the probability of extinction in a periodic environment. J. Math. Biol. 2014, 68, 533–548. [Google Scholar] [CrossRef] [PubMed]
- Npa, K.F.; Jang, S.R.J.; Allen, L.J. The effect of demographic and environmental variability on disease outbreak for a dengue model with a seasonally varying vector population. Math. Biosci. 2021, 331, 108516. [Google Scholar] [CrossRef]
- Zevika, M.; Soewono, E. Deterministic and stochastic CTMC models from Zika disease transmission. AIP Conf. Proc. 2018, 1937, 020023. [Google Scholar] [CrossRef]
- Marwa, Y.M.; Mbalawata, I.S.; Mwalili, S. Continuous time markov chain model for cholera epidemic transmission dynamics. Int. J. Stat. Probab. 2019, 8, 1–32. [Google Scholar] [CrossRef]
- Gani, J.; Swift, R. Deterministic and stochastic models for the spread of cholera. ANZIAM J. 2009, 51, 234–240. [Google Scholar] [CrossRef]
- Azaele, S.; Maritan, A.; Bertuzzo, E.; Rodriguez-Iturbe, I.; Rinaldo, A. Stochastic dynamics of cholera epidemics. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2010, 81, 051901. [Google Scholar] [CrossRef]
- Witbooi, P.J.; Muller, G.E.; Ongansie, M.B.; Ahmed, I.H.; Okosun, K.O. A stochastic population model of cholera disease. Discret. Contin. Dyn. Syst.-Ser. S 2022, 15, 441–456. [Google Scholar] [CrossRef]
- Islam, M.R.; Oraby, T.; McCombs, A.; Chowdhury, M.M.; Al-Mamun, M.; Tyshenko, M.G.; Kadelka, C. Evaluation of the United States COVID-19 vaccine allocation strategy. PLoS ONE 2021, 16, e0259700. [Google Scholar] [CrossRef]
- Thul, L.; Powell, W. Stochastic optimization for vaccine and testing kit allocation for the COVID-19 pandemic. Eur. J. Oper. Res. 2023, 304, 325–338. [Google Scholar] [CrossRef]
- Cohn, J.N.; Johnson, G.; Ziesche, S.; Cobb, F.; Francis, G.; Tristani, F.; Smith, R.; Dunkman, W.B.; Loeb, H.; Wong, M.; et al. A comparison of enalapril with hydralazine–isosorbide dinitrate in the treatment of chronic congestive heart failure. N. Engl. J. Med. 1991, 325, 303–310. [Google Scholar] [CrossRef]
- Van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.J. An Introduction to Stochastic Processes with Applications to Biology; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Maity, S.; Mandal, P.S. A comparison of deterministic and stochastic plant-vector-virus models based on probability of disease extinction and outbreak. Bull. Math. Biol. 2022, 84, 41. [Google Scholar] [CrossRef]
- Khan, A.; Hassan, M.; Imran, M. The effects of a backward bifurcation on a continuous time Markov chain model for the transmission dynamics of single strain dengue virus. Appl. Math. 2013, 4, 663–674. [Google Scholar] [CrossRef]
- Allen, L.J.; van den Driessche, P. Relations between deterministic and stochastic thresholds for disease extinction in continuous-and discrete-time infectious disease models. Math. Biosci. 2013, 243, 99–108. [Google Scholar] [CrossRef]
- Lahodny, G.E.; Allen, L.J. Probability of a disease outbreak in stochastic multipatch epidemic models. Bull. Math. Biol. 2013, 75, 1157–1180. [Google Scholar] [CrossRef]
- Lahodny, G., Jr.; Gautam, R.; Ivanek, R. Estimating the probability of an extinction or major outbreak for an environmentally transmitted infectious disease. J. Biol. Dyn. 2015, 9, 128–155. [Google Scholar] [CrossRef]
- Kundu, S.; Jana, D.; Maitra, S. Study of a multi-delayed SEIR epidemic model with immunity period and treatment function in deterministic and stochastic environment. Differ. Equations Dyn. Syst. 2021, 32, 221–251. [Google Scholar] [CrossRef]
- Schmidt, R.; Voigt, M.; Mailach, R. Latin hypercube sampling-based Monte Carlo simulation: Extension of the sample size and correlation control. In Uncertainty Management for Robust Industrial Design in Aeronautics: Findings and Best Practice Collected During UMRIDA, a Collaborative Research Project (2013–2016) Funded by the European Union; Springer: Cham, Switzerland, 2019; pp. 279–289. [Google Scholar] [CrossRef]
- Rajabi, M.M.; Ataie-Ashtiani, B.; Janssen, H. Efficiency enhancement of optimized Latin hypercube sampling strategies: Application to Monte Carlo uncertainty analysis and meta-modeling. Adv. Water Resour. 2015, 76, 127–139. [Google Scholar] [CrossRef]
- Benedetti, L.; Claeys, F.; Nopens, I.; Vanrolleghem, P.A. Assessing the convergence of LHS Monte Carlo simulations of wastewater treatment models. Water Sci. Technol. 2011, 63, 2219–2224. [Google Scholar] [CrossRef]
- Pennington, H.M. Applications of Latin Hypercube Sampling Scheme and Partial Rank Correlation Coefficient Analysis to Mathematical Models on Wound Healing. Bachelor’s Thesis, Western Kentucky University, Bowling Green, KY, USA, 2015. [Google Scholar]
- Blower, S.M.; Hartel, D.; Dowlatabadi, H.; Anderson, R.M.; May, R.M. Drugs, sex and HIV: A mathematical model for New York City. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1991, 331, 171–187. [Google Scholar] [CrossRef]
- Marino, S.; Hogue, I.B.; Ray, C.J.; Kirschner, D.E. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 2008, 254, 178–196. [Google Scholar] [CrossRef] [PubMed]
- Helton, J.C.; Davis, F.J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab. Eng. Syst. Saf. 2003, 81, 23–69. [Google Scholar] [CrossRef]
- Gillespie, J.; Marshall, R.C. Proteins of the hard keratins of echidna, hedgehog, rabbit, ox and man. Aust. J. Biol. Sci. 1977, 30, 401–410. [Google Scholar] [CrossRef]
- Kadaleka, S. Assessing the Effects of Nutrition and Treatment in Cholera Dynamics: The Case of Malawi. Master’s Dissertation, University of Der es Salaam, Dar es Salaam, Tanzania, 2011. [Google Scholar]
- Onuorah, M.O.; Atiku, F.; Juuko, H. Mathematical model for prevention and control of cholera transmission in a variable population. Res. Math. 2022, 9, 2018779. [Google Scholar] [CrossRef]
- ELmojtaba, I.M.; Biswas, S.; Chattopadhyay, J. Global dynamics and sensitivity analysis of a vector-host-reservoir model. Sultan Qaboos Univ. J. Sci. [SQUJS] 2016, 21, 120–138. [Google Scholar] [CrossRef]
- Hartley, D.M.; Morris, J.G., Jr.; Smith, D.L. Hyperinfectivity: A critical element in the ability of V. cholerae to cause epidemics? PLoS Med. 2006, 3, e7. [Google Scholar] [CrossRef]
- Modnak, C. A model of cholera transmission with hyperinfectivity and its optimal vaccination control. Int. J. Biomath. 2017, 10, 1750084. [Google Scholar] [CrossRef]
- Al-Shanfari, S.; ELmojtaba, I.M.; Alsalti, N. The role of houseflies in cholera transmission. Commun. Math. Biol. Neurosci. 2019, 2019, 31. [Google Scholar] [CrossRef]
- Akman, O.; Corby, M.R.; Schaefer, E. Examination of models for cholera: Insights into model comparison methods. Lett. Biomath. 2016, 3, 93–118. [Google Scholar] [CrossRef]
- Marwa, Y.M.; Mwalili, S.; Mbalawata, I.S. Markov chain Monte Carlo analysis of cholera epidemic. J. Math. Comput. Sci. 2018, 8, 584–610. [Google Scholar] [CrossRef]
- Isere, A.; Osemwenkhae, J.; Okuonghae, D. Optimal control model for the outbreak of cholera in Nigeria. Afr. J. Math. Comput. Sci. Res. 2014, 7, 24–30. [Google Scholar] [CrossRef]
- Allen, L.J. An introduction to stochastic epidemic models. In Mathematical Epidemiology; Springer: Berlin/Heidelberg, Germany, 2008; pp. 81–130. [Google Scholar] [CrossRef]
Parameter | Description | Unit |
---|---|---|
Birth or recruitment rate by human | day−1 | |
Birth or recruitment rate by vector | day−1 | |
Natural human death rate | year−1 | |
Natural vector death rate | day−1 | |
Rates of ingesting vibrios from the safe environment by human | day−1 | |
Concentration of the bacteria, i.e., vibrio cholerae in pure/safe water | cells/day | |
Concentration of the bacteria, i.e., vibrio cholerae in unsafe water | cells/day | |
Rate of shedding bacteria from into the environment | cell/ml per day | |
Rate of shedding bacteria from into the environment | cell/ml per day | |
Rate of contribution to (Vibrio cholera) in the both environments by vectors | cells mL−1 d−1 per vector | |
Modification parameter | dimensionless | |
d | Disease induced death rate | dimensionless |
Recovery rate of symptomatic infected individuals | per day | |
Recovery rate of asymptomatic infected individuals | per day | |
q | Probability of new infected from to be symptomatic | dimensionless |
r | Probability of new infected from to be asymptomatic in which | dimensionless |
Infectious rate of a vector | dimensionless | |
Rates of ingesting vibrios from the non-contaminated/safe environment to vectors | dimensionless | |
Rates of ingesting vibrios from the contaminated/unsafe environment to vector | dimensionless | |
Vibrios net death rate in the contaminated/unsafe environment | day−1 | |
Vibrios net death rate in the non-contaminated/safe environment | day−1 |
Event | State Transition | Transition | Transition Rate |
---|---|---|---|
Recruitment of | |||
Natural death of | |||
Quick progression for after infection | |||
Slow progression for after infection | |||
Natural death of | |||
Death of due to disease | |||
Recovery of | |||
Natural death of | |||
Recovery of | |||
Natural death of | |||
Recruitment of | |||
Natural death of | |||
Progression for after infection | |||
Natural death of | |||
Progression of | |||
Natural death of |
Parameter | Minimum | Baseline | Maximum |
---|---|---|---|
5 | 10 | 12 | |
0.8 | 1.066 | 1.4 | |
0.001 | 0.005 | 0.015 | |
0.01 | 0.189 | 0.21 | |
0.4 | 0.2143 | 0.6 | |
300 | 500 | 700 | |
300 | 500 | 700 | |
d | 0.005 | 0.015 | 0.1 |
0.08 | 0.14 | 0.8 | |
0.08 | 0.5 | 0.8 | |
q | 0.1 | 0.7 | 0.9 |
r | 0.1 | 0.3 | 0.5 |
0.2 | 0.8 | 1.4 | |
0.01 | 0.1 | 1.1 | |
0.1 | 0.9 | 1.3 |
Parameter | Susceptible Host | Symptomatic Infected Host | Asymptomatic Infected Host | Recovered Host | ||||
---|---|---|---|---|---|---|---|---|
PRCC | p-Value | PRCC | p-Value | PRCC | p-Value | PRCC | p-Value | |
** 0.7535 | 0.0000 | 0.4283 | 0.0042 | 0.4309 | 0.0000 | * 0.5046 | 0.0000 | |
0.1576 | 0.0185 | 0.0418 | 0.7600 | −0.2570 | 0.9410 | 0.0558 | 0.5389 | |
−0.4014 | 0.0025 | −0.1005 | 0.8662 | −0.0122 | 0.8177 | 0.0779 | 0.0321 | |
−0.1259 | 0.0273 | 0.0855 | 0.2005 | −0.0829 | 0.0404 | −0.4158 | 0.0000 | |
0.1189 | 0.8939 | −0.0432 | 0.6285 | −0.0318 | 0.8019 | −0.0198 | 0.7931 | |
* 0.5398 | 0.0000 | 0.0412 | 0.0439 | 0.0074 | 0.1090 | −0.0840 | 0.8826 | |
−0.1047 | 0.1621 | 0.1417 | 0.4204 | −0.1213 | 0.9300 | 0.0744 | 0.2116 | |
d | −0.0579 | 0.7610 | −0.1256 | 0.9011 | 0.2264 | 0.7434 | −0.2496 | 0.6980 |
0.0279 | 0.8319 | ** −0.6513 | 0.0000 | −0.1096 | 0.1561 | 0.0906 | 0.3970 | |
−0.0230 | 0.0887 | 0.1271 | 0.9193 | ** −0.6970 | 0.0000 | 0.1463 | 0.0225 | |
q | −0.0036 | 0.9353 | ** 0.7157 | 0.0000 | 0.0032 | 0.7452 | ** 0.6174 | 0.0000 |
r | 0.1621 | 0.6989 | 0.0110 | 0.9443 | * 0.5783 | 0.0000 | 0.3404 | 0.0034 |
0.0835 | 0.7512 | −0.0689 | 0.7135 | 0.0370 | 0.1711 | −0.0775 | 0.5989 | |
−0.2122 | 0.6659 | −0.1954 | 0.2812 | −0.1288 | 0.4233 | −0.1247 | 0.1364 | |
0.0024 | 0.5170 | 0.0900 | 0.1984 | 0.1317 | 0.7777 | −0.0021 | 0.8717 |
Parameter | Susceptible Vector | Exposed Vector | Infected Vector | |||
---|---|---|---|---|---|---|
PRCC | p-Value | PRCC | p-Value | PRCC | p-Value | |
0.1413 | 0.6219 | 0.0589 | 0.5298 | 0.0682 | 0.9323 | |
0.4100 | 0.0003 | 0.2490 | 0.1324 | 0.2058 | 0.0337 | |
0.0612 | 0.7242 | 0.1691 | 0.8022 | 0.1323 | 0.9197 | |
0.1030 | 0.5741 | −0.0870 | 0.0607 | −0.1261 | 0.5811 | |
−0.1624 | 0.7934 | −0.2921 | 0.0003 | *** −0.9619 | 0.0000 | |
0.2046 | 0.2723 | 0.1345 | 0.2141 | −0.1076 | 0.7521 | |
−0.0139 | 0.0133 | 0.1257 | 0.6322 | −0.0952 | 0.2889 | |
d | 0.0189 | 0.8463 | 0.0564 | 0.9443 | −0.0528 | 0.9874 |
−0.1497 | 0.7102 | 0.0203 | 0.4841 | −0.1793 | 0.0917 | |
−0.0522 | 0.1407 | −0.0808 | 0.3676 | −0.0199 | 0.1977 | |
q | −0.1101 | 0.1940 | 0.0893 | 0.1631 | 0.1097 | 0.7107 |
r | −0.0424 | 0.4411 | −0.0320 | 0.9273 | −0.0933 | 0.2789 |
0.1212 | 0.8836 | *** −0.8114 | 0.0000 | 0.0693 | 0.4613 | |
−0.3137 | 0.0017 | 0.0812 | 0.8010 | −0.0869 | 0.7332 | |
*** −0.8658 | 0.0000 | 0.2257 | 0.0007 | 0.2082 | 0.1380 |
1 | 0 | 0 | 0 | 0 | 0 | 0.5028 | 0.4972 |
0 | 1 | 0 | 0 | 0 | 0 | 0.5024 | 0.4976 |
0 | 0 | 1 | 0 | 0 | 0 | 0.6036 | 0.3964 |
0 | 0 | 0 | 1 | 0 | 0 | 0.8177 | 0.1823 |
0 | 0 | 0 | 0 | 1 | 0 | 0.5023 | 0.4977 |
0 | 0 | 0 | 0 | 0 | 1 | 0.8384 | 0.1616 |
1 | 1 | 0 | 0 | 0 | 0 | 0.2526 | 0.7474 |
1 | 1 | 1 | 0 | 0 | 0 | 0.1525 | 0.8475 |
1 | 1 | 1 | 1 | 0 | 0 | 0.1247 | 0.8753 |
1 | 1 | 1 | 1 | 1 | 0 | 0.0626 | 0.9374 |
1 | 1 | 1 | 1 | 1 | 1 | 0.0525 | 0.9475 |
2 | 2 | 2 | 2 | 2 | 2 | 0.0028 | 0.9972 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anteneh, L.M.; Hounkonnou, M.N.; Kakaï, R.G. A Stochastic Continuous-Time Markov Chain Approach for Modeling the Dynamics of Cholera Transmission: Exploring the Probability of Disease Persistence or Extinction. Mathematics 2025, 13, 1018. https://doi.org/10.3390/math13061018
Anteneh LM, Hounkonnou MN, Kakaï RG. A Stochastic Continuous-Time Markov Chain Approach for Modeling the Dynamics of Cholera Transmission: Exploring the Probability of Disease Persistence or Extinction. Mathematics. 2025; 13(6):1018. https://doi.org/10.3390/math13061018
Chicago/Turabian StyleAnteneh, Leul Mekonnen, Mahouton Norbert Hounkonnou, and Romain Glèlè Kakaï. 2025. "A Stochastic Continuous-Time Markov Chain Approach for Modeling the Dynamics of Cholera Transmission: Exploring the Probability of Disease Persistence or Extinction" Mathematics 13, no. 6: 1018. https://doi.org/10.3390/math13061018
APA StyleAnteneh, L. M., Hounkonnou, M. N., & Kakaï, R. G. (2025). A Stochastic Continuous-Time Markov Chain Approach for Modeling the Dynamics of Cholera Transmission: Exploring the Probability of Disease Persistence or Extinction. Mathematics, 13(6), 1018. https://doi.org/10.3390/math13061018