The Adapted Solutions for Backward Stochastic Schrödinger Equations with Jumps
Abstract
:1. Introduction
2. Preliminaries
- {H-valued -measurable random variables satisfying };
- H-valued -measurable random variables such that
- H-valued -measurable random variables such that
- H-valued -adapted random processes such that
- continuous processes in such that
- H-valued -adapted processes such that
- There exists a constant such that for all we have
- .
3. Galerkin’s Approximations and a Prior Estimates
4. Existence of Weak Solutions to BSSEJ (1)
5. Uniqueness of Adapted Solutions to BSSEJ (1)
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Evans, L.C. Partial Differential Equations; American Mathematical Society: Providence, RI, USA, 1998. [Google Scholar]
- Bismut, J.M. Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 1973, 44, 384–404. [Google Scholar] [CrossRef]
- Peng, S. Backward stochastic differential equations and applications to optimal control. Appl. Math. Optim. 1993, 27, 125–144. [Google Scholar] [CrossRef]
- Karoui, E.; Peng, S.G.; Quenez, M.C. Backward stochastic differential equations in finance. Math. Financ. 1997, 7, 1–71. [Google Scholar] [CrossRef]
- Cheridito, P.; Soner, H.M.; Touzi, N.; Victoir, N. Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs. Commun. Pure Appl. Math. 2007, 60, 1081–1110. [Google Scholar] [CrossRef]
- Pardoux, E.; Peng, S. Backward doubly stochastic differential equations and systems of quasilinear SPDEs. Probab. Theory Rel. Fields 1994, 98, 209–227. [Google Scholar] [CrossRef]
- Abidi, H.; Pettersson, R. Spatial convergence for semi-linear backward stochastic differential equations in Hilbert space: A mild approach. Comput. Appl. Math. 2020, 39, 94. [Google Scholar] [CrossRef]
- Nagasa, N.; Nisio, M. Optimal controls for stochastic partial differential equations. SIAM J. Control Optim. 1990, 28, 186–213. [Google Scholar] [CrossRef]
- Ma, J.; Yong, J. Adapted solution of a degenerate backward SPDE, with applications. Stoch. Proc. Appl. 1997, 70, 59–84. [Google Scholar] [CrossRef]
- Peng, S. Stochastic Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 1992, 30, 284–304. [Google Scholar] [CrossRef]
- Du, K.; Tang, S. Strong solution of backward stochastic partial differential equations in C2 domains. Probab. Theory Relat. Fields 2012, 154, 255–285. [Google Scholar] [CrossRef]
- Hu, Y.; Peng, S. Adapted solution of a backward semilinear stochastic evolution equation. Stoch. Anal. Appl. 1991, 9, 445–459. [Google Scholar] [CrossRef]
- Hu, Y.; Ma, J.; Yong, J. On semi-linear degenerate backward stochastic partial differential equations. Probab. Theory Relat. Fields 2002, 123, 381–411. [Google Scholar] [CrossRef]
- Al-Hussein, A. Backward stochastic partial differential equations driven by infinite-dimensional martingales and applications. Stochastics 2009, 81, 601–626. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, R. Well-posedness of backward stochastic partial differential equations with Lyapunov condition. Forum Math. 2020, 32, 723–738. [Google Scholar] [CrossRef]
- Tang, S.J.; Li, X.J. Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 1994, 32, 1447–1475. [Google Scholar] [CrossRef]
- Chen, S.; Tang, S. Semi-linear backward stochastic integral partial differential equations driven by a brownian motion and a poisson point process. Math. Control Relat. F 2015, 5, 401–434. [Google Scholar] [CrossRef]
- Dumitrescu, R.; Øksendal, B.; Sulem, A. Stochastic control for mean-field stochastic partial differential equations with jumps. J. Optim. Theory Appl. 2018, 176, 559–584. [Google Scholar] [CrossRef]
- Kharroubi, I.; Ma, J.; Pham, H.; Zhang, J. Backward SDEs with constrained jumps and quai-variational inequations. Ann. Probab. 2010, 38, 794–840. [Google Scholar] [CrossRef]
- Ma, H.P. Infinite horizon optimal control of mean-field forward-backward delayed systems with Poisson jumps. Eur. J. Control 2019, 46, 14–22. [Google Scholar] [CrossRef]
- Pamen, O.M.; Brandis, T.M.; Proske, F.; Salleh, H.B. Malliavin calculus applied to optimal control of stochastic partial differential equations with jumps. Stochastics 2013, 85, 431–463. [Google Scholar] [CrossRef]
- Quenez, M.C.; Sulem, A. BSDEs with jumps, optimization and applications to dynamic risk measures. Stoch. Process Appl. 2013, 123, 3328–3357. [Google Scholar] [CrossRef]
- Rong, S. On solutions of backward stochastic differential equations with jumps and applications. Stoch. Process Appl. 1997, 66, 209–236. [Google Scholar] [CrossRef]
- Shi, J.; Wu, Z. Backward stochastic differential equations with Markov switching driven by Brownian motion and Poisson random measure. Stochastics 2015, 87, 1–29. [Google Scholar] [CrossRef]
- Zhou, Q.; Ren, Y.; Wu, W. On solutions to backward stochastic partial differential equations for Lévy processes. J. Comput. Appl. Math. 2011, 235, 5411–5421. [Google Scholar] [CrossRef]
- Sidorov, N.A.; Sidorov, D.N. On the solvability of a class of Volterra operator equations of the first kind with piecewise continuous kernels. Math. Notes 2014, 96, 811–826. [Google Scholar] [CrossRef]
- ksendal, B.; Sulem, A.; Zhang, T. Backward stochastic partial differential equations with jumps and application to optimal control of random jump fields. Stochastics 2005, 77, 381–399. [Google Scholar] [CrossRef]
- Rong, S.T.; Xu, H. Adapted solutions of backward stochastic evolution equations with jumps on Hilbert space (I). Acta Sci. Natur. Univ. 2001, 40, 1–5. [Google Scholar]
- Abidi, H.; Amami, R.; Pettersson, R.; Trabelsi, C. L2-convergence of Yosida approximation for semi-linear backward stochastic differential equation with jumps in infinite dimension. Arab J. Math. Sci. 2024, 31, 82–95. [Google Scholar] [CrossRef]
- Barbu, V.; Röckner, M.; Zhang, D. The stochastic logarithmic Schrödinge equation. J. Math. Pures Appl. 2016, 437, 241–254. [Google Scholar]
- Bouard, A.D.; Debussche, A. The stochastic nonlinear Schrödinger equation in H1. Stoch. Anal. Appl. 2003, 21, 97–126. [Google Scholar] [CrossRef]
- Brzeźniak, Z.; Hornung, F.; Weis, L. Martingale solutions for the stochastic nonlinear Schrödinger equation in the energy space. Probab. Theory Relat. Fields 2019, 174, 1273–1338. [Google Scholar] [CrossRef]
- Villarroel, J.; Montero, M. On the effect of random inhomogeneities in Kerr media modelled by a nonlinear Schrödinger equation. J. Phys. B-At. Mol. Opt. 2010, 43, 135–404. [Google Scholar] [CrossRef]
- Villarroel, J.; Montero, M. On the integrability of the Poisson driven stochastic nonlinear Schrödinger equations. Stud. Appl. Math. 2011, 127, 372–393. [Google Scholar] [CrossRef]
- Bouard, A.D.; Hausenblas, E. The nonlinear Schrödinger equation driven by jump processes. J. Math. Anal. Appl. 2019, 475, 215–252. [Google Scholar] [CrossRef]
- Sandrasekaran, V.; Kasinathan, R.; Kasinathan, R.; Chalishajar, D.; Kasinathan, D. Fractional stochastic Schrödinger evolution system with complex potential and Poisson jumps: Qualitative behavior and T-controllability. Partial Differ. Equ. Appl. Math. 2024, 10, 100713. [Google Scholar] [CrossRef]
- Bouard, A.D.; Hausenblas, E.; Ondreját, M. Uniqueness of the nonlinear Schrödinger equation driven by jump processes. Nonlinear Differ. Equ. Appl. 2019, 26, 22. [Google Scholar] [CrossRef]
- Brzeźniak, Z.; Hornung, F.; Manna, U. Weak martingale solutions for the stochastic nonlinear Schrödinger equation driven by pure jump noise. Stoch. Partial Differ. 2020, 8, 1–53. [Google Scholar] [CrossRef]
- Brzeźniak, Z.; Liu, W.; Zhu, J. The stochastic Strichartz estimates and stochastic nonlinear Schrödinger equations driven by Lévy noise. J. Funct. Anal. 2021, 281, 109021. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, W.; Zhai, J. Large deviation principles for stochastic nonlinear Schrödinger equations driven by Lévy noise. arXiv 2023, arXiv:2305.05234. [Google Scholar]
- Xu, Q. Backward stochastic Schrödinger and infinite-dimensional Hamiltonian equations. Discrete Cont. Dyn-A. 2015, 35, 5379–5412. [Google Scholar] [CrossRef]
- Keller, D. Optimal control of a nonlinear stochastic Schrödinger equation. J. Optimiz. Theory App. 2015, 167, 862–873. [Google Scholar] [CrossRef]
- Zhang, D. Optimal bilinear control of stochastic nonlinear Schrödinger equations: Mass-(sub) critical case. Probab. Theory Relat. Fields 2020, 178, 69–120. [Google Scholar] [CrossRef]
- Brzeźniak, Z.; Millet, A. On the stochastic strichartz estimates and the stochastic nonlinear Schrödinger equation on a compact Riemannian manifold. Potential Anal. 2014, 41, 269–315. [Google Scholar] [CrossRef]
- Geiss, C.; Labart, C. Simulation of BSDEs with jumps by Wiener chaos expansion. Stoch. Process Appl. 2016, 126, 2123–2162. [Google Scholar] [CrossRef]
- Karatzas, I.; Shreve, S. Brownian Motion and Stochastic Calculus; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Chalishajar, D.; Kasinathan, D.; Kasinathan, R.; Kasinathan, R. Exponential stability, T-controllability and optimal controllability of higher-order fractional neutral stochastic differential equation via integral contractor. Chaos Solitons Fractals 2024, 186, 115278. [Google Scholar] [CrossRef]
- Chalishajar, D.; Kasinathan, D.; Kasinathan, R.; Kasinathan, R. Viscoelastic Kelvin–Voigt model on Ulam–Hyer’s stability and T-controllability for a coupled integro fractional stochastic systems with integral boundary conditions via integral contractors. Chaos Solitons Fractals 2025, 191, 115785. [Google Scholar] [CrossRef]
- Chalishajar, D.; Kasinathan, D.; Kasinathan, R.; Kasinathan, R. T-controllability of higher-order fractional stochastic delay system via integral contractor. J. Control Decis. 2024, 1–24. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Liu, L. The Adapted Solutions for Backward Stochastic Schrödinger Equations with Jumps. Mathematics 2025, 13, 820. https://doi.org/10.3390/math13050820
Yang L, Liu L. The Adapted Solutions for Backward Stochastic Schrödinger Equations with Jumps. Mathematics. 2025; 13(5):820. https://doi.org/10.3390/math13050820
Chicago/Turabian StyleYang, Li, and Lin Liu. 2025. "The Adapted Solutions for Backward Stochastic Schrödinger Equations with Jumps" Mathematics 13, no. 5: 820. https://doi.org/10.3390/math13050820
APA StyleYang, L., & Liu, L. (2025). The Adapted Solutions for Backward Stochastic Schrödinger Equations with Jumps. Mathematics, 13(5), 820. https://doi.org/10.3390/math13050820