Patterns of Open Innovation Between Industry and University: A Fuzzy Cluster Analysis Based on the Antecedents of Their Collaboration
Abstract
:1. Introduction
2. Frame of Reference
3. Methodology
3.1. Proposed Framework and Its Constructs
3.2. Data Source and Analysis Methods
4. Results
5. Discussion and Conclusions
5.1. Discussion
5.2. Concluding Remarks and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, L.; Lyu, Y.; Su, J.; Han, S. Inbound openness and its impact on innovation performance: An agent-based and and simulation approach. RD Manag. 2020, 50, 212–226. [Google Scholar] [CrossRef]
- Chesbrough, H. To recover faster from Covid-19, open up: Managerial implications from an open innovation perspective. Ind. Mark. Manag. 2020, 88, 410–413. [Google Scholar] [CrossRef]
- Teplov, R.; Albats, R.; Podmetina, D. What Does Open Innovation Mean? Business Versus Academic Perceptions. Int. J. Innov. Manag. 2019, 23, 1950002. [Google Scholar] [CrossRef]
- Huizingh, E.K.R.E. Open innovation: State of art and future perspectives. Technovation 2011, 31, 2–9. [Google Scholar] [CrossRef]
- Bogers, M.; Zobel, A.K.; Afuah, A.; Almirall, E.; Brunswicker, S.; Dahlander, L.; Frederiksen, L.; Gawer, A.; Gruber, M.; Haefliger, S.; et al. The open innovation research landscape: Established perspectives and emerging themes across different levels of analysis. Ind. Innov. 2017, 24, 8–40. [Google Scholar] [CrossRef]
- Bigliardi, B.; Galati, F. An open innovation model for SMEs. In Researching Open Innovation in SMEs; Frattini, F., Usman, M., Roijakkers, N., Vanhaverbeke, W., Eds.; World Scientific: Singapore, 2018; pp. 71–113. [Google Scholar]
- da Silva Meireles, F.R.; Azevedo, A.C.; Boaventura, J.M.G. Open innovation and collaboration: A systematic literature review. J. Eng. Technol. Manag. 2022, 65, 101702. [Google Scholar] [CrossRef]
- Shearmur, R.; Doloreux, D. Innovation and knowledge-intensive business service: The contribution of knowledge-intensive business service to innovation in manufacturing establishments. Econ. Innov. New Technol. 2013, 22, 751–774. [Google Scholar] [CrossRef]
- Santoro, G.; Ferraris, A.; Giacosa, E.; Giovando, G. How SMEs Engage in Open Innovation: A Survey. J. Knowl. Econ. 2018, 9, 561–574. [Google Scholar] [CrossRef]
- Gilsing, V.; Bekkers, R.; De Bodas Freitas, I.M.; Van der Steen, M. Differences in technology transfer between science-based and development-based industries: Transfer mechanisms and barriers. Technovation 2011, 31, 638–647. [Google Scholar] [CrossRef]
- Lopes, A.P.V.B.V.; de Carvalho, M.M. Evolution of the open innovation paradigm: Towards a contingent conceptual model. Technol. Forecast. Soc. Change 2018, 132, 284–298. [Google Scholar] [CrossRef]
- Baban, C.F.; Baban, M.; Rangone, A. Outcomes of Industry-University Collaboration in Open Innovation: An Exploratory Investigation of Their Antecedents’ Impact Based on a PLS-SEM and Soft Computing Approach. Mathematics 2022, 10, 931. [Google Scholar] [CrossRef]
- Parmentola, A.; Ferretti, M.; Panetti, E. Exploring the university-industry cooperation in a low innovative region. What differences between low tech and high tech industries? Int. Entrep. Manag. J. 2021, 17, 1469–1496. [Google Scholar] [CrossRef]
- Bigliardi, B.; Ferraro, G.; Filippelli, S.; Galati, F. The past, present and future of open innovation. Eur. J. Innov. Manag. 2021, 24, 1130–1161. [Google Scholar] [CrossRef]
- Greco, M.; Strazzullo, S.; Cricelli, L.; Grimaldi, M.; Mignacca, B. The fine line between success and failure: An analysis of open innovation projects. Eur. J. Innov. Manag. 2022, 25, 687–715. [Google Scholar] [CrossRef]
- Colombo, M.G.; Foss, N.J.; Lyngsie, J.; Rossi Lamastra, C. What drives the delegation of innovation decisions? The roles of firm innovation strategy and the nature of external knowledge. Res. Policy 2021, 50, 104134. [Google Scholar] [CrossRef]
- Nsanzumuhire, S.U.; Groot, W. Context perspective on University-Industry Collaboration processes: A systematic review of literature. J. Clean. Prod. 2020, 258, 120861. [Google Scholar] [CrossRef]
- Vick, T.E.; Robertson, M. A systematic literature review of UK university-Industry collaboration for knowledge transfer: A future research agenda. Sci. Public Policy 2018, 45, 579–590. [Google Scholar] [CrossRef]
- Gilman, M.; Serbanica, C. University–industry linkages in the UK: Emerging themes and ‘unanswered’ questions. Prometh. Crit. Stud. Innov. 2014, 32, 403–439. [Google Scholar] [CrossRef]
- Ankrah, S.; AL-Tabbaa, O. Universities-industry collaboration: A systematic review. Scand. J. Manag. 2015, 31, 387–408. [Google Scholar] [CrossRef]
- Verbano, C.; Crema, M.; Venturini, K. The Identification and Characterization of Open Innovation Profiles in Italian Small and Medium-sized Enterprises. J. Small Bus. Manag. 2015, 53, 1052–1075. [Google Scholar] [CrossRef]
- Hertrich, T.J.; Brenner, T. Classification of regions according to the dominant innovation barriers: The characteristics and stability of regional archetypes in Germany. Reg. Sci. Policy Pract. 2023, 15, 2182–2223. [Google Scholar] [CrossRef]
- Fernández-Esquinas, M.; Pinto, H.; Yruela, M.P.; Pereira, T.S. Tracing the flows of knowledge transfer: Latent dimensions and determinants of university–industry interactions in peripheral innovation systems. Technol. Forecast. Soc. Change 2016, 113, 266–279. [Google Scholar] [CrossRef]
- Bigliardi, B.; Galati, F. Which factors hinder the adoption of open innovation in SMEs? Technol. Anal. Strateg. Manag. 2016, 28, 869–885. [Google Scholar] [CrossRef]
- Rybnicek, R.; Königsgruber, R. What makes industry–university collaboration succeed? A systematic review of the literature. J. Bus. Econ. 2019, 89, 221–250. [Google Scholar]
- Spithoven, A.; Vanhaverbeke, W.; Roijakkers, N. Open innovation practices in SMEs and large enterprises. Small Bus. Econ. 2013, 41, 537–562. [Google Scholar] [CrossRef]
- Mikhailov, A.; Puffal, D.P. University-industry Collaboration and Innovation in Low-tech Industries: The Case of Brazil. Triple Helix 2023, 10, 291–320. [Google Scholar] [CrossRef]
- Laursen, K.; Salter, A. Open for innovation: The role of openness in explaining innovation performance among UK manufacturing firms. Strateg. Manag. J. 2006, 27, 131–150. [Google Scholar] [CrossRef]
- Leiponen, A.; Helfat, C.E. Innovation objectives, knowledge sources, and the benefits of breadth. Strateg. Manag. J. 2010, 31, 224–236. [Google Scholar] [CrossRef]
- OECD. Entrepreneurship at a Glance 2017; OECD Publishing: Paris, France, 2017. [Google Scholar]
- Eurostat. High-Tech Industry and Knowledge-Intensive Services. Annex 3—High-Tech Aggregation by NACE Rev.2. 2024. Available online: https://ec.europa.eu/eurostat/cache/metadata/FR/htec_esms.htm (accessed on 8 March 2024).
- Hair, J.; Anderson, R.; Tatham, R.; Black, W. Multivariate Data Analysis, 8th ed.; Cengage Learning: Andover, UK, 2019. [Google Scholar]
- Dahlander, L.; Gann, D.M. How open is innovation? Res. Policy 2010, 39, 699–709. [Google Scholar] [CrossRef]
- Schwämmle, V.; Jensen, O.N. A simple and fast method to determine the parameters for fuzzy c-means cluster analysis. Bioinformatics 2010, 26, 2841–2848. [Google Scholar] [CrossRef]
- Döring, C.; Lesot, M.-J.; Kruse, R. Data analysis with fuzzy clustering methods. Comput. Stat. Data Anal. 2006, 51, 192–214. [Google Scholar] [CrossRef]
- Menard, S. Applied Logistic Regression Analysis, 2nd ed.; Sage: Thousand Oaks, CA, USA, 2002. [Google Scholar]
- Ferraro, M.B.; Giordan, P.; Serafini, A. fclust: An R Package for Fuzzy Clustering. R J. 2019, 11, 198–210. [Google Scholar] [CrossRef]
- van de Vrande, V.; de Jong, J.P.J.; Vanhaverbeke, W.; deRochemont, M. Open innovation in SMEs. Trends Motiv. Manag. Chall. 2009, 29, 423–437. [Google Scholar]
- Ausloos, M.; Bartolacci, F.; Castellano, N.G.; Cerqueti, R. Exploring how innovation strategies at time of crisis influence performance: A cluster analysis perspective. Technol. Anal. Strateg. Manag. 2018, 30, 484–497. [Google Scholar] [CrossRef]
- Hochleitner, F.; Arbussà, A.; Coenders, G. Evolution of inbound openness profiles in the innovation practices of small and medium-sized enterprises in Spain and Portugal. Int. J. Entrep. Innov. Manag. 2020, 24, 73–96. [Google Scholar] [CrossRef]
- Lichtenthaler, U. Open innovation in practice: An analysis of strategic approaches to technology transactions. IEEE Trans. Eng. Manag. 2008, 55, 148–157. [Google Scholar] [CrossRef]
- Cesaratto, S.; Mangano, M. Technological profiles and economic performance in the Italian manufacturing sector. Econ. Innov. New Technol. 1993, 2, 237–256. [Google Scholar] [CrossRef]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef]
- Pal, N.R.; Bezdek, J.C. On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 1995, 3, 370–379. [Google Scholar] [CrossRef]
- Croissant, Y. Estimation of random utility models in R: The mlogit package. J. Stat. Softw. 2020, 95, 1–41. [Google Scholar] [CrossRef]
- Tufféry, S. Data Mining and Statistics for Decision Making; John Wiley & Sons: Chichester, UK, 2011. [Google Scholar]
- Kennedy, P. A Guide to Econometrics, 6th ed.; Blackwell Publishing: Malden, MA, USA, 2003. [Google Scholar]
- Arel-Bundock, V. Marginaleffects: Predictions, Comparisons, Slopes, Marginal Means, and Hypothesis Tests, R Package Version 0.18.0.9001. 2024. Available online: https://marginaleffects.com (accessed on 1 February 2025).
- Ankrah, S.N.; Burgess, T.F.; Grimshaw, P.; Shaw, N.E. Asking both university and industry actors about their engagement in knowledge transfer: What single-group studies of motives omit. Technovation 2013, 33, 50–65. [Google Scholar] [CrossRef]
- Calza, F.; Carayannis, E.G.; Panetti, E.; Parmentola, A. The Role of University in the Smart Specialization Strategy: Exploring How University–Industry Interactions Change in Different Technological Domains. IEEE Trans. Eng. Manag. 2022, 69, 2649–2657. [Google Scholar] [CrossRef]
- Phongthiya, T.; Malik, K.; Niesten, E.; Anantana, T. Innovation intermediaries for university-industry R&D collaboration: Evidence from science parks in Thailand. J. Technol. Transf. 2022, 47, 1885–1920. [Google Scholar]
- Bruneel, J.; D’Este, P.; Salter, A. Investigating the factors that diminish the barriers to university-industry collaboration. Res. Policy 2010, 39, 858–868. [Google Scholar] [CrossRef]
- Laursen, K.; Salter, A. The paradox of openness: Appropriability, external search and collaboration. Res. Policy 2014, 43, 867–878. [Google Scholar] [CrossRef]
- Madanaguli, A.; Dhir, A.; Talwar, S.; Clauss, T.; Kraus, S.; Kaur, P. Diving into the uncertainties of open innovation: A systematic review of risks to uncover pertinent typologies and unexplored horizons. Technovation 2023, 119, 102582. [Google Scholar] [CrossRef]
- Alexander, A.T.; Miller, K.; Fielding, S. Open for business: Universities, entrepreneurial academics and open innovation. Int. J. Innov. Manag. 2015, 19, 1540013. [Google Scholar] [CrossRef]
- Badillo, E.R.; Llorente Galera, F.; Moreno, R. Cooperation in R&D, firm size and type of partnership: Evidence for the Spanish automotive industry. Eur. J. Manag. Bus. Econ. 2017, 26, 123–143. [Google Scholar]
- Bellucci, A.; Pennacchio, L. University knowledge and firm innovation: Evidence from European countries. J. Technol. Transf. 2016, 41, 730–752. [Google Scholar] [CrossRef]
- Brunswicker, S.; Vanhaverbeke, W. Open Innovation in Small and Medium-Sized Enterprises (SMEs): External Knowledge Sourcing Strategies and Internal Organizational Facilitators. J. Small Bus. Manag. 2015, 53, 1241–1263. [Google Scholar] [CrossRef]
- Marescotti, M.E.; Demartini, E.; Filippini, R.; Gaviglio, A. Smart farming in mountain areas: Investigating livestock farmers’ technophobia and technophilia and their perception of innovation. J. Rural Stud. 2021, 86, 463–472. [Google Scholar] [CrossRef]
- Mina, A.; Bascavusoglu-Moreau, E.; Hughes, A. Open service innovation and the firm’s search for external knowledge. Res. Policy 2014, 43, 853–866. [Google Scholar] [CrossRef]
Index *) | Criterion | Number of Clusters | |||
---|---|---|---|---|---|
k = 3 | k = 4 | k = 5 | k = 6 | ||
Partition coefficient (PC) | Larger the better | 0.448 | 0.362 | 0.309 | 0.272 |
Modified partition coefficient (MPC) | Larger the better | 0.172 | 0.149 | 0.137 | 0.127 |
Partition entropy (PE) | Smaller the better | 0.920 | 1.176 | 1.377 | 1.546 |
Silhouette (SIL) | Larger the better | 0.313 | 0.279 | 0.263 | 0.243 |
Fuzzy silhouette (SIL.F) | Larger the better | 0.505 | 0.587 | 0.603 | 0.648 |
Antecedent | Cluster1 (n = 37 Members) | Cluster2 (34 Members) | Cluster3 (27 Members) | Anova Test (F Statistics) | ||||
---|---|---|---|---|---|---|---|---|
OiM | 0.712 | a) | 0.822 | a) | 0.219 | b) | 29.580 | *** |
OiB | 0.475 | a) | 0.826 | b) | 0.330 | a) | 22.509 | *** |
OiC | 0.554 | a) | 0.893 | b) | 0.122 | b) | 150.596 | *** |
Cluster classification | Insecure open innovators | Responsive open innovators | Low open innovators |
Cluster | Estimate Coefficients | Std. Error | z-Value | Pr (>|z|) |
---|---|---|---|---|
Cluster1 | ||||
Intercept | −1.64211 | 0.85328 | −1.9245 | 0.05430 .) |
Size | −1.16919 | 1.26896 | −0.9214 | 0.35686 |
Industry | 2.44939 | 1.08622 | 2.2550 | 0.02414 |
Cluster2 | ||||
Intercept | −2.93442 | 0.89982 | −3.2611 | 0.00111 **) |
Size | 0.23327 | 1.29904 | 0.1796 | 0.85749 *) |
Industry | 1.93970 | 1.12509 | 1.7240 | 0.08470 .) |
Cluster3 | (reference category) |
Predictor | Contrast | Estimate | Std. Error | z | Pr (>|z|) | Conf. Low | Conf. High |
---|---|---|---|---|---|---|---|
2.5% | 97.5% | ||||||
Size | |||||||
Cluster1 | mean(dY/dX) | −0.2918 | 0.164 | −1.780 | 0.0751.) | −0.6131 | 0.0295 |
Cluster2 | mean(dY/dX) | 0.2012 | 0.152 | 1.324 | 0.1854 | −0.0966 | 0.4990 |
Cluster3 | mean(dY/dX) | 0.0906 | 0.199 | 0.455 | 0.6490 | −0.2996 | 0.4808 |
Industry | |||||||
Cluster1 | mean(dY/dX) | 0.2924 | 0.119 | 2.449 | 0.0143 *) | 0.0584 | 0.5265 |
Cluster2 | mean(dY/dX) | 0.0746 | 0.119 | 0.627 | 0.5307 | −0.1586 | 0.3079 |
Cluster3 | mean(dY/dX) | −0.3670 | 0.165 | −2.222 | 0.0263 *) | −0.6907 | −0.0433 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Băban, M.; Băban, C.F. Patterns of Open Innovation Between Industry and University: A Fuzzy Cluster Analysis Based on the Antecedents of Their Collaboration. Mathematics 2025, 13, 772. https://doi.org/10.3390/math13050772
Băban M, Băban CF. Patterns of Open Innovation Between Industry and University: A Fuzzy Cluster Analysis Based on the Antecedents of Their Collaboration. Mathematics. 2025; 13(5):772. https://doi.org/10.3390/math13050772
Chicago/Turabian StyleBăban, Marius, and Călin Florin Băban. 2025. "Patterns of Open Innovation Between Industry and University: A Fuzzy Cluster Analysis Based on the Antecedents of Their Collaboration" Mathematics 13, no. 5: 772. https://doi.org/10.3390/math13050772
APA StyleBăban, M., & Băban, C. F. (2025). Patterns of Open Innovation Between Industry and University: A Fuzzy Cluster Analysis Based on the Antecedents of Their Collaboration. Mathematics, 13(5), 772. https://doi.org/10.3390/math13050772