Existence and Uniqueness of the Viscous Burgers’ Equation with the p-Laplace Operator
Abstract
1. Introduction
2. Preliminary Mathematical Considerations
- (i)
- Let be a non-negative, absolutely continuous function on which satisfies for a.e. t the differential inequality
- (ii)
- In particular, if
3. Existence and Uniqueness
3.1. Existence
3.2. Uniqueness
4. Numerical Testing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Burgers, J.M. A Mathematical Model Illustrating the Theory of Turbulence. Adv. Appl. Mech. 1948, 1, 171–199. [Google Scholar]
- Bird, R.B.; Armstrong, R.C.; Hassager, O. Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Hayat, T.; Ashraf, B.; Shehzad, S.A.; Abouelmagd, E. Three-dimensional flow of Eyring Powell nanofluid over an exponentially stretching sheet. Int. J. Numer. Methods Heat Fluid Flow 2015, 25, 593–616. [Google Scholar] [CrossRef]
- Ershkov, S.V.; Baranovskii, E.S.; Prosviryakov, E.Y.; Yudin, A.V. Non-Newtonian rivulet-flows on unsteady heated plane surface. Int. J. Non-Linear Mech. 2025, 170, 104984. [Google Scholar] [CrossRef]
- Pukhnachev, V.V. Mathematical model of an incompressible viscoelastic Maxwell medium. J. Appl. Mech. Tech. Phys. 2010, 51, 546–554. [Google Scholar] [CrossRef]
- Harley, C.; Momoniat, E.; Rajagopal, K.R. Reversal of flow of a non-Newtonian fluid in an expanding channel. Int. J. Non-Linear Mech. 2020, 121, 103056. [Google Scholar] [CrossRef]
- Wei, D.; Jordan, P.M. A note on acoustic propagation in power-law fluids: Compact kinks, mild discontinuities, and a connection to finite-scale theory. Int. J. Nonlin. Mech. 2013, 48, 72–77. [Google Scholar] [CrossRef]
- Wei, D.; Borden, H. Traveling Wave Solutions of Burgers’ Equation for Power-law Non-Newtonian flows. Appl. Math. E-Notes 2011, 11, 133–138. [Google Scholar]
- Adams, R.A.; Fournier, J.J.F. Sobolev Spaces, 2nd ed.; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Hopf, E. The partial differential equation ut+uux=μuxx. Commun. Pure Appl. Math. 1950, 3, 201–230. [Google Scholar] [CrossRef]
- Kruzhkov, S.N. First Order Quasilinear Equations in Several Variables. Math. USSR-Sb 1970, 10, 217–243. [Google Scholar] [CrossRef]
- Bendaas, S. Boundary Value Problems for Burgers Equations, through Nonstandard Analysis. Appl. Math. 2015, 6, 1086. [Google Scholar] [CrossRef][Green Version]
- Benia, Y.; Sadallah, B. Existence of solutions to Burgers equations in domains that can be transformed into rectangles. Electron. J. Differ. Equ. 2016, 157, 1–13. [Google Scholar]
- Ladyzhenskaya, O.A. The Mathematical Theory of Viscous Incompressible flOw, 2nd ed.; Gordon and Breach Science Publishers: New York, NY, USA, 1969. [Google Scholar]
- Wei, D. Existence and uniqueness of solutions to the stationary power-law Navier-Stokes problem in bounded convex domains. Proc. Dyn. Syst. Appl. 2001, 3, 611–618. [Google Scholar]
- Cole, J.D. On a quasi-linear parabolic equation occurring in aerodynamics. Q. Appl. Math. 1951, 9, 225–236. [Google Scholar] [CrossRef]
- Temam, R. Navier-Stokes Equations: Theory and Numerical Analysis; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Evans, L.C. Partial Differential Equations, 2nd ed.; American Mathematical Society: Providence, RI, USA, 1998. [Google Scholar]
- Wade, W.R. The Bounded Convergence Theorem. Am. Math. Mon. 1974, 81, 387–389. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Adil Khan, M.; Abathun, A. Refinement of the Jensen integral inequality. Open Math. 2016, 14, 221–228. [Google Scholar] [CrossRef]
- Hunter, J.K. An Introduction to Real Analysis. Available online: https://www.collegesidekick.com/study-docs/3018040 (accessed on 1 January 2014).
- Lindqvist, P. Notes on the Stationary p-Laplace Equation, 1st ed.; Springer Briefs in Mathematics: Cham, Switzerland, 2019. [Google Scholar]
Parameters | Case 1 | Case 2 | Case 3 |
---|---|---|---|
(kg/m3) | 1000 | 1200 | 1100 |
u (m/s) | 0.10 | 2.0 | 10.00 |
L (m) | 0.05 | 0.10 | 0.05 |
n | 0.70 | 0.80 | 0.70 |
K (Pa·sn) | 1.00 | 2.00 | 2.00 |
(s−1) | 1000 | 500 | 200 |
9.98 | 165.4 | 537.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhapsarbayeva, L.; Wei, D.; Bagymkyzy, B. Existence and Uniqueness of the Viscous Burgers’ Equation with the p-Laplace Operator. Mathematics 2025, 13, 708. https://doi.org/10.3390/math13050708
Zhapsarbayeva L, Wei D, Bagymkyzy B. Existence and Uniqueness of the Viscous Burgers’ Equation with the p-Laplace Operator. Mathematics. 2025; 13(5):708. https://doi.org/10.3390/math13050708
Chicago/Turabian StyleZhapsarbayeva, Lyailya, Dongming Wei, and Bagyzhan Bagymkyzy. 2025. "Existence and Uniqueness of the Viscous Burgers’ Equation with the p-Laplace Operator" Mathematics 13, no. 5: 708. https://doi.org/10.3390/math13050708
APA StyleZhapsarbayeva, L., Wei, D., & Bagymkyzy, B. (2025). Existence and Uniqueness of the Viscous Burgers’ Equation with the p-Laplace Operator. Mathematics, 13(5), 708. https://doi.org/10.3390/math13050708