The Krasnoselskii–Mann Method for Approximation of Coincidence Points of Set-Valued Mappings
Abstract
1. Introduction
2. The Coincidence Point Problem
3. The Basic Lemma
4. The First Main Result
5. The Second Main Result
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Ariza-Ruiz, D.; Leustean, L.; Lopez-Acedo, G. Firmly nonexpansive mappings in classes of geodesic spaces. Trans. Amer. Math. Soc. 2014, 366, 4299–4322. [Google Scholar] [CrossRef]
- Du, W.-S. Some generalizations of fixed point theorems of Caristi type and Mizoguchi–Takahashi type under relaxed conditions. Bull. Braz. Math. Soc. (N.S.) 2019, 50, 603–624. [Google Scholar] [CrossRef]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 1984. [Google Scholar]
- Khamsi, M.A.; Kozlowski, W.M. Fixed Point Theory in Modular Function Spaces; Birkhäuser: Cham, Switzerland; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Genericity in Nonlinear Analysis. Developments in Mathematics; Springer: New York, NY, USA, 2014. [Google Scholar]
- Sahu, D.R.; Wong, N.C.; Yao, J.-C. A unified hybrid iterative method for solving variational inequalities involving generalized pseudocontractive mappings. SIAM J. Control Optim. 2012, 50, 2335–2354. [Google Scholar] [CrossRef]
- Zaslavski, A.J. Approximate Solutions of Common Fixed Point Problems, Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Zaslavski, A.J. Algorithms for Solving Common Fixed Point Problems. Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Censor, Y.; Davidi, R.; Herman, G.T. Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 2010, 26, 12. [Google Scholar] [CrossRef]
- Censor, Y.; Elfving, T.; Herman, G.T. Averaging Strings of Sequential Iterations for Convex Feasibility Problems, Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications; Butnariu, D., Censor, Y., Reich, S., Eds.; Elsevier: North-Holland, The Netherlands, 2001; pp. 101–113. [Google Scholar]
- Djafari-Rouhani, B.; Farid, M.; Kazmi, K.R. Common solution to generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup in Hilbert space. J. Korean Math. Soc. 2016, 53, 89–114. [Google Scholar] [CrossRef]
- Gibali, A. A new split inverse problem and an application to least intensity feasible solutions. Pure Appl. Funct. Anal. 2017, 2, 243–258. [Google Scholar]
- Takahashi, W.; Xu, H.K.; Yao, J.-C. Iterative methods for generalized split feasibility problems in Hilbert spaces. Set-Valued Var. Anal. 2015, 23, 205–221. [Google Scholar] [CrossRef]
- Takahashi, W.; Yao, J.C. Strong convergence theorems under shrinking projection methods for split common fixed point problems in two Banach spaces. J. Convex Anal. 2021, 28, 1097–1118. [Google Scholar]
- Xu, H.K. Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inver. Probl. 2010, 26, 1–17. [Google Scholar] [CrossRef]
- Yao, Y.; Liou, Y.C.; Yao, J.-C. Split common fixed point problem for two quasi-pseudocontractive operators and its algorithm construction. Fixed Point Theory Appl. 2015, 2015, 127. [Google Scholar] [CrossRef]
- Borwein, J.; Reich, S.; Shafrir, I. Krasnoselski–Mann iterations in normed spaces. Canad. Math. Bull. 1992, 35, 21–28. [Google Scholar] [CrossRef]
- Dong, Q.-L.; Cho, Y.J.; He, S.; Pardalos, P.M.M. Themistocles, The Krasnosel’skii-Mann Iterative Method–Recent Progress and Applications. In SpringerBriefs in Optimization; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Kim, T.W.; Xu, H.K. Strong convergence of modified Mann iterations. Nonlinear Anal. 2005, 61, 51–60. [Google Scholar] [CrossRef]
- Krasnosel’skii, M.A. Two remarks on the method of successive approximation. Uspehi Mat. Nauk 1955, 10, 123–127. [Google Scholar]
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Qin, X.; Yao, J.-C. Weak convergence of a Mann-like algorithm for nonexpansive and accretive operators. J. Inequal. Appl. 2016, 232. [Google Scholar] [CrossRef]
- Xu, H.H.; Altwaijry, N.; Chebbi, S. Strong convergence of Mann’s iteration process in Banach spaces. Mathematics 2020, 8, 954. [Google Scholar] [CrossRef]
- Abbas, M.; Jungck, G. Common fixed point results for noncommuting mappings without continuity in cone metric spaces. J. Math. Anal. Appl. 2008, 341, 416–420. [Google Scholar] [CrossRef]
- Batra, R.; Vashistha, S.; Kumar, R. Coincidence point theorem for a new type of contraction on metric spaces. Int. J. Math. Anal. 2014, 8, 1315–1320. [Google Scholar] [CrossRef]
- Bisht, R.K. On coincidence and fixed points of general mappings. Linear Nonlinear Anal. 2023, 9, 207–212. [Google Scholar]
- Jungck, G. Commuting mappings and fixed points. Am. Math. Mon. 1976, 83, 261–263. [Google Scholar] [CrossRef]
- Jungck, G. Common fixed points for commuting and compatible maps in compacta. Proc. Amer. Math. Soc. 1988, 103, 977–983. [Google Scholar] [CrossRef]
- Jungck, G.; Radenovic, S.; Radojevic, S.; Rakocevic, V. Common fixed point theorems for weakly compatible pairs on cone metric spaces. Fixed Point Theory Appl. 2009, 643840. [Google Scholar] [CrossRef]
- Kohlenbach, U. Some logical metatheorems with applications in functional analysis. Trans. Amer. Math. Soc. 2005, 357, 89–128. [Google Scholar] [CrossRef]
- Kohlenbach, U. Applied Proof Theory: Proof Interpretations and Their Use in Mathematics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Cheval, H.; Leustean, L. Quadratic rates of asymptotic regularity for the Tikhonov–Mann iteration. Optim. Methods Softw. 2022, 37, 2225–2240. [Google Scholar] [CrossRef]
- Takahashi, W. A convexity in metric space and nonexpansive mappings, I. Kodai Math. Semin. Rep. 1970, 22, 142–149. [Google Scholar] [CrossRef]
- Kohlenbach, U.; Leustean, L. Asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces. J. Eur. Math. Soc. 2010, 12, 71–92. [Google Scholar] [CrossRef]
- Leustean, L. Quadratic rate of asymptotic regularity for CAT(0)-spaces. J. Math. Anal. Appl. 2007, 325, 386–399. [Google Scholar] [CrossRef]
- Leustean, L. Nonexpansive iterations in uniformly convex W–hyperbolic spaces. In Nonlinear Analysis and Optimization I: Nonlinear Analysis; Leizarowitz, A., Mordukhovich, B.S., Shafrir, I., Zaslavski, A., Eds.; American Mathematical Society: Providence, RI, USA, 2010; pp. 193–209. [Google Scholar]
- Zaslavski, A.J. The Krasnoselskii-Mann method for common coincidence problems. J. Optim. Theory Appl. 2025, 204, 25. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaslavski, A.J. The Krasnoselskii–Mann Method for Approximation of Coincidence Points of Set-Valued Mappings. Mathematics 2025, 13, 662. https://doi.org/10.3390/math13040662
Zaslavski AJ. The Krasnoselskii–Mann Method for Approximation of Coincidence Points of Set-Valued Mappings. Mathematics. 2025; 13(4):662. https://doi.org/10.3390/math13040662
Chicago/Turabian StyleZaslavski, Alexander J. 2025. "The Krasnoselskii–Mann Method for Approximation of Coincidence Points of Set-Valued Mappings" Mathematics 13, no. 4: 662. https://doi.org/10.3390/math13040662
APA StyleZaslavski, A. J. (2025). The Krasnoselskii–Mann Method for Approximation of Coincidence Points of Set-Valued Mappings. Mathematics, 13(4), 662. https://doi.org/10.3390/math13040662