The Tragic Downfall and Peculiar Revival of Quaternions
Abstract
:1. Introduction
2. Projectivity, Euler–Rodrigues’ Parameters and the Cayley Transform
3. Fedorov’s Parametrization of the Lorentz Group
4. The Contribution of Grassmann and Clifford
5. Maxwell, Dirac, and Weyl: Geometric Calculus in Modern Physics
6. Hestenes and the Geometric Algebra Renaissance
7. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PGA | Projective Geometric Algebra |
CGA | Conformal Geometric Algebra |
References
- Dray, T.; Manogue, C. The Geometry of the Octonions; World Scientific: Singapore, 2015. [Google Scholar]
- Maxwell, J.C. A Treatise on Electricity and Magnetism; Macmillan and Co.: London, UK, 1873; Volume 1. [Google Scholar]
- Hamilton, W.R. Lectures on Quaternions; Hodges and Smith: Dublin, Ireland, 1853. [Google Scholar]
- Gibbs, J.W.; Wilson, E.B. Vector Analysis; Charles Scribner’s Sons: New York, NY, USA, 1901. [Google Scholar]
- Heaviside, O. Electromagnetic Theory; “The Electrician” Printing and Publishing Company Ltd.: London, UK, 1893. [Google Scholar]
- Tait, P.G. An Elementary Treatise on Quaternions; Cambridge University Press: London, UK, 1890. [Google Scholar]
- Clifford, W. Applications of Grassmann’s extensive algebra. Am. J. Math. 1878, 1, 350–358. [Google Scholar] [CrossRef]
- Altmann, S. Hamilton, Rodrigues, and the quaternion scandal. Math. Mag. 1989, 62, 291–308. [Google Scholar] [CrossRef]
- Pujol, J. Hamilton, Rodrigues, Gauss, Quaternions, and Rotations: A Historical Reassessment. Commun. Math. Anal. 2012, 13, 1–14. [Google Scholar]
- Rodrigues, O. Des lois géométriques qui regissent les déplacéments d’un systéme solide dans l’espace, et de la variation des coordonnées provenant de ces déplacéments considérés indépendamment des causes qui peuvent les produire. J. Math. Pures Appl. 1840, 5, 380–440. [Google Scholar]
- Piña, E. Rotations with Rodrigues’ Vector. Eur. J. Phys. 2011, 32, 1171–1178. [Google Scholar] [CrossRef]
- Bauchau, O.; Trainelli, L.; Bottaso, C. The Vectorial Parameterization of Rotation. Nonlinear Dyn. 2003, 32, 71–92. [Google Scholar] [CrossRef]
- Fedorov, F. The Lorentz Group; Nauka: Moscow, USSR, 1979. (In Russian) [Google Scholar]
- Mladenova, C. Approach to Description of a Rigid Body Motion. C. R. Acad. Sci. Bulg. 1985, 38, 1657–1660. [Google Scholar]
- Brezov, D.; Mladenova, C.; Mladenov, I. A Decoupled Solution to the Generalized Euler Decomposition Problem in R3 and R2,1. J. Geom. Symmetry Phys. 2014, 33, 47–78. [Google Scholar]
- Wittenburg, J. Kinematics: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Farias, J.G.; De Pieri, E.; Martins, D. A Review on the Applications of Dual Quaternions. Machines 2024, 12, 402. [Google Scholar] [CrossRef]
- Valverde, A.; Tsiotras, P. Spacecraft Robot Kinematics Using Dual Quaternions. Robotics 2018, 7, 64. [Google Scholar] [CrossRef]
- Kuvshinov, V.; Tho, N. Local Vector Parameters of Groups, The Cartan Form and Applications to Gauge and Chiral Field Theory. Phys. Elem. Part. Nucl. 1994, 25, 603–648. [Google Scholar]
- Brezov, D.; Mladenova, C.; Mladenov, I. Wigner Rotation and Thomas Precession: Geometric Phases and Related Physical Theories. J. Korean Phys. Soc. 2015, 66, 1656–1663. [Google Scholar] [CrossRef]
- Brezov, D. On Complex Kinematics and Relativity. Adv. Appl. Clifford Algebr. 2022, 32, 38. [Google Scholar] [CrossRef]
- Brezov, D. Higher-Dimensional Representations of SL2 and its Real Forms via Plücker Embedding. Adv. Appl. Clifford Algebr. 2017, 27, 2375–2392. [Google Scholar] [CrossRef]
- Grassmann, H. Die lineale Ausdehnungslehre, ein neuer Zweig der Mathematik; (von 1844); Verlag von Otto Wigand: Leipzig, Germany, 1878. [Google Scholar]
- Lounesto, P. Clifford Algebras and Spinors; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Delanghe, R. Clifford Analysis: History and Perspective. Comput. Methods Funct. Theory 2001, 1, 107–153. [Google Scholar] [CrossRef]
- De Leo, S.; Rotelli, P.P. Quaternionic Analyticity. Appl. Math. Lett. 2003, 16, 1077–1081. [Google Scholar] [CrossRef]
- Jefferies, B. The Monogenic Functional Calculus. In Operator Theory; Alpay, D., Ed.; Springer: Basel, Switzerland, 2015. [Google Scholar]
- Hestenes, D.; Garret Sobczyk, G. Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1984. [Google Scholar]
- Ivey, T.; Landsberg, J. Cartan for Begginers: Differential Geometry via Moving Frames and Exterior Differential Systems; American Mathematical Society: Providence, RI, USA, 2003. [Google Scholar]
- Vargas, J.G. Differential Geometry for Physicists and Mathematicians; World Scientific: Singapore, 2014. [Google Scholar]
- Vargas, J.G. The Foundations of Quantum Mechanics and the Evolution of the Cartan-Kähler Calculus. Found. Phys. 2008, 38, 610–647. [Google Scholar] [CrossRef]
- Shirokov, D. Covariantly Constant Solutions of the Yang–Mills Equations. Adv. Appl. Clifford Algebr. 2018, 28, 53. [Google Scholar] [CrossRef]
- Shirokov, D. On Solutions of the Yang-Mills Equations in the Algebra of h-Forms. J. Phys. Conf. Ser. 2021, 2099, 012015. [Google Scholar] [CrossRef]
- Danielewski, M.; Sapa, L. Foundations of the Quaternion Quantum Mechanics. Entropy 2020, 22, 1424. [Google Scholar] [CrossRef] [PubMed]
- Adler, S. Quaternionic Quantum Mechanics and Quantum Fields; Oxford University Press Inc.: New York, NY, USA, 1995. [Google Scholar]
- Castro, C. A Clifford algebra-based grand unification program of gravity and the Standard Model: A review study. Can. J. Phys. 2014, 92, 1501–1527. [Google Scholar] [CrossRef]
- Lasenby, A.N. Geometric Algebra as a Unifying Language for Physics and Engineering and Its Use in the Study of Gravity. Adv. Appl. Clifford Algebr. 2017, 27, 733–759. [Google Scholar] [CrossRef]
- Valverde, A.; Tsiotras, P. Dual Quaternion Framework for Modeling of Spacecraft-Mounted Multibody Robotic Systems. Front. Robot. AI 2018, 5, 128. [Google Scholar] [CrossRef]
- Hitzer, E. Introduction to Clifford’s Geometric Algebra. SICE J. Control. Meas. Syst. Integr. 2011, 4, 001–011. [Google Scholar]
- Dorst, L.; De Keninck, S. A Guided Tour to the Plane-Based Geometric Algebra PGA. 2022. Available online: https://bivector.net/PGA4CS.html (accessed on 12 February 2025).
- Hrdina, J.; Návrat, A.; Vašik, P.; Dorst, L. Projective Geometric Algebra as a Subalgebra of Conformal Geometric algebra. Adv. Appl. Clifford Algebr. 2021, 31, 18. [Google Scholar] [CrossRef]
- Bayro-Corrochano, E. Geometric Computing: For Wavelet Transforms, Robot Vision, Learning, Control and Action; Springer: London, UK, 2010. [Google Scholar]
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
0 | ||||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
4 | ||||||||
5 | ||||||||
6 | ||||||||
7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brezov, D. The Tragic Downfall and Peculiar Revival of Quaternions. Mathematics 2025, 13, 637. https://doi.org/10.3390/math13040637
Brezov D. The Tragic Downfall and Peculiar Revival of Quaternions. Mathematics. 2025; 13(4):637. https://doi.org/10.3390/math13040637
Chicago/Turabian StyleBrezov, Danail. 2025. "The Tragic Downfall and Peculiar Revival of Quaternions" Mathematics 13, no. 4: 637. https://doi.org/10.3390/math13040637
APA StyleBrezov, D. (2025). The Tragic Downfall and Peculiar Revival of Quaternions. Mathematics, 13(4), 637. https://doi.org/10.3390/math13040637