Lie Ideals and Homoderivations in Semiprime Rings
Abstract
:1. Introduction
2. Results
- (i)
- If , then .
- (ii)
- If ( or ), then
- (iii)
- If U is square-closed and , then and
- (i)
- or
- (ii)
- (i)
- , or
- (ii)
- , or
- (iii)
- , or
- (iv)
- , or
- (i)
- or
- (ii)
- or
- (iii)
- or
- (iv)
- or
- (v)
- .
3. Open Problems
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Posner, E.C. Derivations in prime rings. Proc. Am. Math. Soc. 1957, 8, 1093–1100. [Google Scholar] [CrossRef]
- El Sofy, M.M. Rings with some kinds of mappings. Master’s Thesis, Cairo University, Branch of Fayoum, Fayoum, Egypt, 2000. [Google Scholar]
- Daif, M.N.; Bell, H.E. Remarks on derivations on semiprime rings. Int. J. Math. Math. Sci. 1992, 15, 205–206. [Google Scholar] [CrossRef]
- Quadri, M.A.; Khan, M.S.; Rehman, N. Generalized derivations and commutativity of prime rings. Indian Pure Appl. Math. 2003, 34, 1393–1396. [Google Scholar]
- Koc, E.; Golbasi, Ö. Some results on ideals of semiprime rings with multiplicative generalized derivations. Commun. Algebra 2018, 46, 4905–4913. [Google Scholar] [CrossRef]
- Bell, H.E.; Daif, M.N. On derivations and commutativity in prime rings. Acta Math. Hung. 1995, 66, 337–343. [Google Scholar] [CrossRef]
- Nabiel, H. Semiderivations and commutativity in semiprime rings. Gen. Math. Notes 2013, 19, 71–82. [Google Scholar]
- Hongan, M. A note on semiprime rings with derivation. Internat. J. Math. Math. Sci. 1997, 20, 413–415. [Google Scholar] [CrossRef]
- De Filippis, V.; Mamouni, A.; Oukhtite, L. Semiderivations satisfying certain algebraic identities on Jordan ideals. Int. Sch. Res. Not. 2013, 2013, 738368. [Google Scholar] [CrossRef]
- Melaibari, A.; Muthana, N.; Al-Kenani, A. On homoderivations in rings. Gen. Math. Notes 2016, 35, 1–8. [Google Scholar]
- Ashraf, M.; Rehman, N. On derivations and commutativity in prime rings. East-West J. Math. 2001, 3, 87–91. [Google Scholar] [CrossRef]
- Alharfie, E.F.; Muthana, N.M. The commutativity of prime ring with homoderivations. Int. J. Adv. Appl. Sci. 2018, 5, 79–81. [Google Scholar] [CrossRef]
- Engin, A.; Aydın, N. Homoderivations in prime rings. J. New Theory 2023, 43, 23–34. [Google Scholar] [CrossRef]
- Centrone, L.; Zargeh, C. Varieties of Null-Filiform Leibniz Algebras Under the Action of Hopf Algebras. Algebr. Repr. Theory 2023, 26, 631–648. [Google Scholar] [CrossRef]
- Hongan, M.; Rehman, N.; Al-Omary, R.M. Lie ideals and Jordan triple derivations in rings. Rend. Semin. Mat. Univ. Padova 2011, 125, 147–156. [Google Scholar] [CrossRef]
- Ferreira, R.N.; Ferreira, B.L.M. Jordan triple derivation on alternative rings. Proyecciones 2018, 37, 171–180. [Google Scholar] [CrossRef]
- Ferreira, B.L.M.; Guzzo, H., Jr.; Ferreira, R.N.; Wei, F. Jordan derivations of alternative rings. Commun. Algebra 2020, 48, 717–723. [Google Scholar] [CrossRef]
- Ferreira, B.L.M.; Kaygorodov, I. Commuting maps on alternative rings. Ric. Mat. 2022, 71, 67–78. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hummdi, A.Y.; Bedir, Z.; Sögütcü, E.K.; Gölbaşı, Ö.; Rehman, N.u. Lie Ideals and Homoderivations in Semiprime Rings. Mathematics 2025, 13, 548. https://doi.org/10.3390/math13040548
Hummdi AY, Bedir Z, Sögütcü EK, Gölbaşı Ö, Rehman Nu. Lie Ideals and Homoderivations in Semiprime Rings. Mathematics. 2025; 13(4):548. https://doi.org/10.3390/math13040548
Chicago/Turabian StyleHummdi, Ali Yahya, Zeliha Bedir, Emine Koç Sögütcü, Öznur Gölbaşı, and Nadeem ur Rehman. 2025. "Lie Ideals and Homoderivations in Semiprime Rings" Mathematics 13, no. 4: 548. https://doi.org/10.3390/math13040548
APA StyleHummdi, A. Y., Bedir, Z., Sögütcü, E. K., Gölbaşı, Ö., & Rehman, N. u. (2025). Lie Ideals and Homoderivations in Semiprime Rings. Mathematics, 13(4), 548. https://doi.org/10.3390/math13040548