Next Article in Journal
Stubbornness as Control in Professional Soccer Games: A BPPSDE Approach
Previous Article in Journal
Two-Stage Archive Evolutionary Algorithm for Constrained Multi-Objective Optimization
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Note on Factorization and the Number of Irreducible Factors of xnλ over Finite Fields

College of Science, North China University of Technology, Beijing 100144, China
*
Author to whom correspondence should be addressed.
Mathematics 2025, 13(3), 473; https://doi.org/10.3390/math13030473
Submission received: 26 November 2024 / Revised: 24 December 2024 / Accepted: 25 December 2024 / Published: 31 January 2025
(This article belongs to the Section A: Algebra and Logic)

Abstract

:
Let F q be a finite field, and let n be a positive integer such that gcd ( q , n ) = 1 . The irreducible factors of x n 1 and x n λ are fundamental concepts with wide applications in cyclic codes and constacyclic codes. Furthermore, the number of irreducible factors of x n 1 and x n λ is useful in many computational problems involving cyclic codes and constacyclic codes. In this paper, we give a more concrete irreducible factorization of x n 1 and x n λ . Based on this, the number of irreducible factors of x n 1 and x n λ over F q , for any λ F q , is determined through research on the representatives and the sizes of the q-cyclotomic cosets. As applications, we present the necessary and sufficient conditions for F ( x n 1 ) = 6 and a more concrete factorization of x n 1 in these cases.

1. Introduction

Let F q be a finite field, and let n be a positive integer such that gcd ( n , q ) = 1 . For any γ Z / n Z , the q-cyclotomic coset modulo n containing γ is defined by the subset
c n / q ( γ ) = { γ , γ q , , γ q τ 1 } ,
where τ is the smallest positive integer such that γ q τ γ ( mod n ) . Each element in c n / q ( γ ) is called a representative of the coset c n / q ( γ ) . The study of cyclotomic cosets plays a very important role in many computational problems. Since q-cyclotomic cosets completely determine the irreducible factorization of x n 1 , Φ n ( x ) , and x n λ over F q , cyclotomic cosets are also needed in coding theory, such as the classification of constacyclic codes and counting problems involving constacyclic codes. These problems all require the parameters of cyclotomic cosets, for example, leaders, sizes, or representatives.
In [1], the q-cyclotomic cosets modulo n contained in the subset 1 + r Z / n r Z , such that gcd ( n r , q ) = 1 and r q 1 , were determined. Further, the authors enumerated the Euclidean self-dual codes. In [2,3], algorithms for calculating the leader of cyclotomic cosets were given based on the stream cipher m-sequences and problems in statistical physics, respectively. Determining the representatives and the sizes of q-cyclotomic cosets modulo n under certain conditions can help in studying problems involving constacyclic codes. Some research work can be seen in [4,5,6,7,8,9,10,11].
This paper was inspired by [12]. The purpose of this paper is to determine the number of irreducible factors of x n λ over F q for any λ F q . We know that we can calculate the number of irreducible factors of x n 1 using the equation
x n 1 = d n Φ n ( x ) ,
where, for any d n , Φ d ( x ) can be factored into ϕ ( d ) ord d ( q ) monic irreducible polynomials of the same degree ord d ( q ) over F q . In [12], a necessary and sufficient condition for
F ( x n 1 ) = s
was given, where F ( x n 1 ) denotes the number of distinct irreducible factors of x n 1 over F q . Suppose that n 1 , n 2 , , n t are t factors of n, and d n i denotes the order of q modulo n i . Then,
F ( x n 1 ) = s
if and only if
x i = ϕ ( n i ) d n i ( i = 1 , 2 , , t )
is a solution to the Diophantine equation
x 1 + x 2 + + x t = s .
As an application, [12] obtained the sufficient and necessary conditions for F ( x n 1 ) = 3 , 4 , 5 .
Through a careful study of the q-cyclotomic cosets, we give more concrete factorization of x n 1 and x n λ than the factorization formula given in [13]. Then, based on the splitting or stability of cyclotomic cosets, we determine the number of irreducible factors of x n λ and x n 1 over F q for any λ F q ; however, the method differs from that in [12]. As an application, we establish the necessary and sufficient conditions when
F ( x n 1 ) = 6 .
In addition, a more concrete factorization of x n 1 in these cases is given.

2. Preliminaries

Throughout this paper, we assume that n is a positive integer and that F q denotes a finite field with q elements, where q = p e is a power of a prime p and gcd ( p , n ) = 1 . F q = F q / { 0 } is the multiplicative group of F q consisting of all non-zero elements of F q . We first review some basic results in number theory and finite fields, which we will use in the subsequent sections.

2.1. Basic Number Theory

Let be a prime number. We denote the -adic valuation of n as follows:
v ( n ) = max { k Z : k n } .
Then we introduce the following lift-the-exponent lemmas in two cases.
Lemma 1 
([2]). Let ℓ be an odd prime number, and let m be an integer such that m 1 . Then, v ( m d 1 ) = v ( m 1 ) + v ( d ) for any positive integer d.
Lemma 2 
([2]). Let m be an odd integer, and d be a positive integer. Based on this, the following cases arise:
(1) 
If m 1 ( mod 4 ) , then
v 2 ( m d 1 ) = v 2 ( m 1 ) + v 2 ( d ) , v 2 ( m d + 1 ) = 1 .
(2) 
If m 3 ( mod 4 ) and d is odd, then
v 2 ( m d 1 ) = 1 , v 2 ( m d + 1 ) = v 2 ( m + 1 ) .
(3) 
If m 3 ( mod 4 ) and d is even, then
v 2 ( m d 1 ) = v 2 ( m + 1 ) + v 2 ( d ) , v 2 ( m d + 1 ) = 1 .

2.2. Cyclotomic Cosets

If the decomposition of n is given by n = p 1 e 1 p s e s , where p 1 , , p s are distinct prime numbers and e 1 , , e s are positive integers, m is an integer coprime to n. We define rad ( n ) and ord n ( m ) as follows:
rad ( n ) = p 1 p s , ord n ( m ) = min { k Z : m k 1 ( mod n ) } .
If ( Z / n Z ) is a cyclic group, each generator of ( Z / n Z ) is called a primitive root modulo n. A well-known theorem about the existence of primitive roots is shown below.
Lemma 3 
([14]). Let n be a positive integer. Then, n possesses primitive roots if and only if n is of the form 2 , 4 , p α , or 2 p α , where p is an odd prime and α is a positive integer.
We also review some familiar results below.
Lemma 4 
([15]). Let η be a primitive root modulo an odd prime ℓ. If η 1 is not congruent to 1 modulo 2 , then η is a primitive root modulo d for all d 1 .
Lemma 5 
([12]). Let ℓ be an odd prime and η be a primitive root modulo 2 , with gcd ( η , ) = 1 . Then, η is a primitive root modulo d for all d 1 .
Lemma 6 
([12]). Let η be a primitive root modulo d . Then η is a primitive root modulo 2 d , where η , , and d are defined as above.
Recently, a criterion for the primitive root system and a proof of the existence of the primitive root system modulo p 1 e 1 p s e s were given in [16].
Lemma 7 
([16]). Let p 1 , , p s be distinct odd primes, and let e 1 , , e s be positive integers. An s-tuple ( η 1 , , η s ) of integers is said to be a primitive root system modulo p 1 e 1 p s e s if, for any 1 i s , the following conditions hold:
(1) 
η i is a primitive root modulo p i d for all d 1 ;
(2) 
η i 1 ( mod p j e j ) for any j i .
For any odd primes p 1 , , p s and positive integers e 1 , , e s , there exists a primitive root system modulo p 1 e 1 p s e s .
Further, the explicit representatives and sizes of q-cyclotomic cosets modulo an odd integer n are given. If n = p 1 e 1 p s e s for distinct odd primes p 1 , , p s different from p and positive integers e 1 , , e s , fix a system of primitive roots ( η 1 , , η s ) modulo n. For any integers y 1 , , y s such that 0 y i e i , i = 1 , , s , the notations are defined as follows:
(1)
f i , y i = ord p i e i y i ( q ) ;
(2)
g i , y i = ϕ ( p i e i y i ) / f i , y i ;
(3)
τ y 1 y s = ord p 1 e 1 y 1 p s e s y s ( q ) = lcm ( f 1 , y 1 , , f s , y s ) .
Lemma 8 
([16]). Let p 1 , , p s be distinct odd prime numbers different from p, and let e 1 , , e s be positive integers. Then, all the distinct q-cyclotomic cosets modulo n = p 1 e 1 p s e s are given by
c n / q ( η 1 x 1 η s x s p 1 y 1 p s y s ) = { η 1 x 1 η s x s p 1 y 1 p s y s , η 1 x 1 η s x s p 1 y 1 p s y s q , , η 1 x 1 η s x s p 1 y 1 p s y s q τ y 1 y s 1 }
for 0 y i e i , i = 1 , , s ; 0 x 1 g 1 , y 1 1 ; and 0 x i g i , y i · gcd ( lcm ( f 1 , y 1 , , f i 1 , y i 1 ) , f i , y i ) 1 , i = 2 , , s .
By applying the lift-the-exponent lemma, a more concrete size of the q-cyclotomic cosets modulo n is given.
Lemma 9 
([16]). Denote by Σ = Σ ( n ; q ) the set of all applicable 2 s -tuples ( y 1 , , y s , x 1 , , x s ) that satisfy the inequality above. For any 2 s -tuple ( y 1 , , y s , x 1 , , x s ) Σ , the q-cyclotomic coset c n / q ( η x 1 η s x s p 1 y 1 p s y s ) has a size of
τ y 1 y s = lcm ( ord p 1 m 1 ( q ) · p 1 M 1 , , ord p s m s ( q ) · p s M s ) ,
where m i = min { e i y i , 1 } and M i = max { e i y i v p i ( q ord p i ( q ) 1 ) , 0 } , i = 1 , , s .
Based on the theories above, [16] considered the case where modulo n is even. Let n = 2 e 0 p 1 e 1 p s e s , where p 1 , , p s are different odd primes and e 0 , e 1 , , e s are positive integers. Since there is no primitive root of Z / 2 e 0 Z , where e 0 3 , Lemma 8 does not apply in this case.
Lemma 10 
([16]). Let n be an arbitrary positive integer, and let q be an odd prime power that is coprime to n. Let γ be an element in Z / n Z with the associated q-cyclotomic coset modulo n given by
c n / q ( γ ) = { γ , γ q , , γ q τ 1 } .
(1) 
If 2 n γ q τ γ , that is, v 2 ( q τ 1 ) + v 2 ( γ ) v 2 ( n ) + 1 , then by viewing γ as an element in Z / 2 n Z , the q-cyclotomic coset modulo 2 n containing γ is
c 2 n / q ( γ ) = { γ , γ q , , γ q τ 1 } .
Moreover, the q-cyclotomic coset
c 2 n / q ( n + γ ) = { n + γ , ( n + γ ) q , , ( n + γ ) q τ 1 }
modulo 2 n containing n + γ is disjoint with c 2 n / q ( γ ) , and the union c 2 n / q ( γ ) c 2 n / q ( n + γ ) is exactly the preimage of c n / q ( γ ) under the projection Z / 2 n Z Z / n Z .
(2) 
If 2 n γ q τ γ , that is, v 2 ( q τ 1 ) + v 2 ( γ ) < v 2 ( n ) + 1 , then by viewing γ as an element in Z / 2 n Z , the q-cyclotomic coset modulo 2 n containing γ is
c 2 n / q ( γ ) = { γ , γ q , , γ q 2 τ 1 } .
Moreover, the coset c 2 n / q ( γ ) contains n + γ and is exactly the preimage of c n / q ( γ ) under the projection Z / 2 n Z Z / n Z .
If γ Z / n Z fits the first condition in Lemma 10, we say that c n / q ( γ ) is splitting with respect to the extension Z / 2 n Z : Z / n Z . Otherwise, we say that c n / q ( γ ) is stable with respect to the extension Z / 2 n Z : Z / n Z . We define that an element γ ¯ Z / n Z is divisible by 2 e 0 if any representative of γ in Z is divisible by 2 e 0 . This definition is clearly well defined. Then, we give an explanation of q-cyclotomic cosets modulo n, where n is even.
For any γ Z / n Z , where n is the greatest odd factor of n, we denote the size of the q-cyclotomic coset modulo n containing γ by τ , and it is easy to see that 2 0 γ . Since
v 2 ( γ ) + v 2 ( q τ 1 ) v 2 ( 2 n ) ,
we have that the q-cyclotomic cosets modulo 2 n containing γ is
c 2 n / q ( γ ) = { γ , γ q , , γ q τ 1 }
and
c 2 n / q ( γ + n ) = { γ + n , ( γ + n ) q , , ( γ + n ) q τ 1 } .
If γ is odd, then we have 2 γ + n ; otherwise, we have 2 γ . We assume that 2 γ (if 2 n + γ , the proof is similar). Since
v 2 ( γ ) + v 2 ( q τ 1 ) v 2 ( 2 2 n ) ,
we have that the q-cyclotomic cosets modulo 2 2 n containing γ is
c 2 2 n / q ( γ ) = { γ , γ q , , γ q τ 1 }
and
c 2 2 n / q ( γ + 2 n ) = { γ + 2 n , ( γ + 2 n ) q , , ( γ + 2 n ) q τ 1 } .
If 2 2 γ , then we can easily see that 2 2 2 n + γ . Conversely, if 2 2 2 n + γ , then we can easily see that 2 2 γ . So there must be one of γ and 2 n + γ that is divisible by 2 2 . And so on, for n = 2 e 0 p 1 e 1 p s e s , if 2 e 0 γ , we can verify that there is exactly one among c 2 n / q ( γ ) and c 2 n / q ( n + γ ) that is divisible by 2 e 0 + 1 . Furthermore, there is a q-cyclotomic coset that will keep splitting, while others will remain stable when
v 2 ( γ ) + v 2 ( q τ 1 ) < v 2 ( n ) .

2.3. The Factorization of x n 1 , Φ n ( X ) , and x n λ

In this subsection, we review the formula in [13] for the factorization of x n 1 , Φ n ( x ) , and x n λ . Here, n is a positive integer coprime to q.
Lemma 11 
([13]). Let ω = ord rad ( n ) ( q ) , and set s = ω if 4 n or q ω 1 ( mod 4 ) ; otherwise, set s = 2 ω . Furthermore, for all positive integers t, we define d ( t ) = gcd ( n , q t 1 ) , and for every i C R q ( d ( s ) ) , where C R q ( d ( s ) ) , denote a complete set of representatives of the q-cyclotomic cosets modulo d ( s ) , we set c i = min { t N | d ( s ) d ( t ) i } . Then, the factorization of x n 1 into monic irreducible factors over F q is
v n d ( s ) i C R q ( d ( s ) ) gcd ( i , v ) = 1 l = 0 c i x v · l · ( 1 ) c i l U { 0 , , c i 1 } | U | = c i l u U ζ d ( s ) 1 · q u ,
where, for all v n d ( s ) and all i C R q ( d ( s ) ) such that gcd ( i , v ) = 1 , the monic irreducible factor belonging to ( v , i ) has degree v c i and order v · d ( s ) gcd ( i , d ( s ) ) .
Lemma 12 
([13]). Let n N such that gcd ( n , q ) = 1 . Let ω = ord rad ( n ) ( q ) , and set s = ω if 4 n or q ω 1 ( mod 4 ) ; otherwise, set s = 2 ω . Furthermore, we define d ( s ) = gcd ( n , q s 1 ) . Then, the factorization of the cyclotomic polynomial Φ n ( x ) into ϕ ( d ( s ) ) s monic irreducible factors of degree n d ( s ) · s over F q is
i CR q ( d ( s ) ) gcd ( i , d ( s ) ) = 1 [ l = 0 s x n d ( s ) · l · ( 1 ) s l U { 0 , , s 1 } U = s l u U ζ d ( s ) i · q u ] .
Lemma 13 
([13]). Let λ F q and n N such that gcd ( n , q ) = 1 and n = n 1 · n 2 , where rad ( n 1 ) ord ( λ ) and gcd ( n 2 , ord ( λ ) ) = 1 . Let ω = ord rad ( n ) ( q ) , and set s = ω if 4 n or q ω 1 ( ( mod 4 ) ) ; otherwise, set s = 2 ω . For all positive integers t, we set d 1 ( t ) = gcd ( n 1 , q t 1 ord ( λ ) ) and d 2 ( t ) = gcd ( n 2 , q t 1 ) . If 4 d 1 ( s ) or q 1 ( mod 4 ) , then s 1 = d 1 ( s ) d 1 ( 1 ) ; otherwise, s 1 = 2 d 1 ( s ) d 1 ( 2 ) . For every i C R q ( d 2 ( s ) ) , where C R q ( d 2 ( s ) ) denote a complete set of representatives of the q-cyclotomic cosets modulo d 2 ( s ) , we set t i = min { t N d 2 ( s ) d 2 ( t ) i } and c i = lcm ( t i , s 1 ) . Then, there exists b F q s such that b d 1 ( s ) = a , and the factorization of x n λ over F q is
j { 0 , , d 1 ( s ) 1 } / v n 2 d 2 ( s ) i C R q ( d 2 ( s ) ) gcd ( i , v ) = 1 m = 0 gcd ( t i , s 1 ) 1 S ( j , v , i , m ) ,
where, for all applicable ( j , v , i , m ) , the monic irreducible polynomial S ( j , v , i , m ) of degree n 1 d 1 ( s ) · v · c i and order ord ( a ) · n 1 · v · d 2 ( s ) gcd ( i , d 2 ( s ) ) is defined as
S ( j , v , i , m ) = l = 0 c i x n 1 d 1 ( s ) · v · l · ( 1 ) c i l U { 0 , , c i 1 } U = c i l u U ( ζ d 2 ( s ) i · q m ( ζ d 1 ( s ) j b ) r v ) q u ,
where r is a positive integer satisfying r = 1 if a = 1 or r n 2 1 ( ( mod ord ( a ) · d 1 ( s ) ) ) otherwise. Furthermore, for all j , j ˜ { 0 , , d 1 ( s ) 1 } , we have j j ˜ if and only if ζ d 1 ( s ) j ˜ = ζ d 1 ( s ) j · q m b q m 1 for an integer 0 m s 1 1 .
It is not difficult to observe that, although [13] provided the explicit factorization of x n 1 , Φ n ( x ) , and x n λ , we cannot calculate the number of irreducible factors for any n , q such that gcd ( n , q ) = 1 because the author did not provide the explicit representatives and sizes of the q-cyclotomic cosets modulo n in the formula.

3. Main Results

Let F q be a finite field, and let q = p e , n be a positive integer such that gcd ( n , q ) = 1 . Then, we give a different formula to calculate the number of irreducible factors of x n 1 and x n λ over F q for any λ F q .

3.1. The Number of Irreducible Factors of x n 1

Let n = 2 e 0 ˜ p 1 e 1 ˜ p s e s ˜ , and set
ω = ord rad ( n ) ( q ) , if 4 n or q ord rad ( n ) ( q ) 1 ( mod 4 ) ; 2 ord rad ( n ) ( q ) , otherwise .
d = gcd ( n , q ω 1 ) = 2 e 0 p 1 e 1 p s e s , d = p 1 e 1 p s e s .
Without loss of generality, we assume that the odd primes p 1 , , p s are ranked in such a way that
ord p 1 ( q ) , ord p 2 ( q ) , , ord p s ( q )
are even, and
ord p s + 1 ( q ) , ord p s + 2 ( q ) , , ord p s ( q )
are odd.
Fix a system of primitive roots ( η 1 , , η s ) modulo d = p 1 e 1 p s e s , and let Σ = Σ ( d ; q ) be the set of applicable 2 s -tuples, i.e., the tuples ( y 1 , , y s , x 1 , , x s ) , such that 0 y i e i and that 0 x 1 g 1 , y 1 1 and 0 x i g i , y i · gcd ( lcm ( f 1 , y 1 , , f i 1 , y i 1 ) , f i , y i ) for i = 2 , , m .
For any ( y , x ) = ( y 1 , , y s , x 1 , , x s ) Σ , define Γ ( y ) = Γ ( y 1 , , y s ) to be the set of all s-tuples u = ( u 1 , , u s ) of integers satisfying 0 u i e i ˜ e i and u i = 0 given y i 0 . For any y = ( y 1 , , y s ) , where ( y , x ) Σ , let { i 1 , , i α ( y ) } consisting of index i such that y i = 0 .
Now, we will calculate the number of irreducible factors of x n 1 . We begin with the easier cases where, e 0 ˜ = 0 and e 1 ˜ = 1.
Proposition 1. 
(1) 
If e 0 ˜ = 0 , then x n 1 can be factored into the irreducible factors over F q as
x n 1 = ( y , x ) Σ u Γ ( y ) S y , x , u ,
where, for every ( y , x ) = ( y 1 , , y s , x 1 , , x s ) Σ and u = ( u 1 , , u s ) Γ ( y ) , the irreducible polynomial S y , x , u is given by
S y , x , u = j = 0 τ y 1 y s ( 1 ) τ y 1 y s j R { 0 , , τ y 1 y s 1 } | R | = τ y 1 y s j r R ζ d η 1 x 1 η s x s p 1 y 1 p s y s q r x j p 1 u 1 p s u s .
(2) 
The number of irreducible factors of x n 1 is
κ = 0 y 1 e 1 0 y s e s i = 1 s [ p i e i y i 1 ( p i 1 ) ] lcm ( f 1 , y 1 , , f s , y s ) · j = 1 α ( y ) ( e i j ˜ e i j + 1 ) .
Proposition 2. 
(1) 
If e 0 ˜ = 1 , then x n 1 can be factored into the irreducible factors over F q as
x n 1 = ( y , x ) Σ u Γ ( y ) S y , x , u · ( S y , x , u ) ,
where, for any ( y , x ) Σ and u Γ ( y ) , the irreducible polynomials S y , x , u and S y , x , u are, respectively, given by
S y , x , u = j = 0 τ y 1 y s ( 1 ) τ y 1 y s j R { 0 , , τ y 1 y s 1 } | R | = τ y 1 y s j r R ζ d η 1 x 1 η s x s p 1 y 1 p s y s q r x j p 1 u 1 p s u s
and
S y , x , u = j = 0 τ y 1 y s ( 1 ) τ y 1 y s j R { 0 , , τ y 1 y s 1 } | R | = τ y 1 y s j r R ζ d η 1 x 1 η s x s p 1 y 1 p s y s q r x j p 1 u 1 p s u s .
(2) 
The number of irreducible factors of x n 1 is 2 κ , where
κ = 0 y 1 e 1 0 y s e s i = 1 s [ p i e i y i 1 ( p i 1 ) ] lcm ( f 1 , y 1 , , f s , y s ) · j = 1 α ( y ) ( e i j ˜ e i j + 1 ) .
We still need to consider the case where e 0 ˜ 2 . Fix an applicable 2 s -tuple ( y , x ) = ( y 1 , , y s , x 1 , , x s ) Σ and an s-tuple u = ( u 1 , , u s ) Γ ( y ) . Let v y 1 y s + = v 2 ( q τ y 1 y s 1 ) , v y 1 y s = v 2 ( q τ y 1 y s + 1 ) .
Proposition 3. 
If q 3 ( mod 4 ) , for any s-tuple y = ( y 1 , , y s ) , where ( y , x ) Σ , q τ y 1 y s 3 ( mod 4 ) if and only if
y i = e i , f o r i = 1 , , s ,
where τ y 1 y s is the size of the q-cyclotomic coset modulo d .
Proof. 
Since q 3 ( mod 4 ) , q τ y 1 y s 3 ( mod 4 ) if and only if τ y 1 y s is odd. According to Lemma 9, we know that
τ y 1 y s = lcm ( ord p 1 m 1 ( q ) · p 1 M 1 , , ord p s m s ( q ) · p s M s ) ,
where m i = min { e i y i , 1 } and M i = max { e i y i v p i ( q ord p i ( q ) 1 ) , 0 } , i = 1 , , s . Noting that
ord p 1 ( q ) , ord p 2 ( q ) , , ord p s ( q )
are even, τ y 1 y s is odd if and only if e i = y i for any i = 1 , , s . □
Proposition 4. 
For any y = ( y 1 , , y s ) , where ( y , x ) Σ , if q τ y 1 y s 1 ( mod 4 ) , the number of irreducible factors of x n 1 associated with y = ( y 1 , , y s ) is
κ y = 2 v 2 ( d ) 1 ( e 0 ˜ e 0 + 1 ) [ j = 1 α ( y ) ( e i j ˜ e i j + 1 ) ] + 2 v 2 ( d ) 1 [ j = 1 α ( y ) ( e i j ˜ e i j + 1 ) ] , 1 v 2 ( d ) v y 1 y s + ; 2 v y 1 y s + 1 ( e 0 ˜ e 0 + 1 ) [ j = 1 α ( y ) ( e i j ˜ e i j + 1 ) ] + [ ( v 2 ( d ) v y 1 y s + 1 ) · 2 v y 1 y s + 1 + 2 v y 1 y s + ] [ j = 1 α ( y ) ( e i j ˜ e i j + 1 ) ] , v 2 ( d ) v y 1 y s + + 1
Proof. 
For any ( y , x ) = ( y 1 , , y s , x 1 , , x s ) Σ , when v 2 ( d ) = 1 , there will be two q-cyclotomic cosets modulo d
c d / q ( η 1 x 1 η s x s p 1 y 1 p s y s ) , c n / q ( η 1 x 1 η s x s p 1 y 1 p s y s + d )
generated by c d / q ( η 1 x 1 η s x s p 1 y 1 p s y s ) , and there is one among c d / q ( η 1 x 1 η s x s p 1 y 1 p s y s ) and c d / q ( η 1 x 1 η s x s p 1 y 1 p s y s + d ) whose elements are all even, while the other has elements that are all odd. Suppose that η 1 x 1 η s x s p 1 y 1 p s y s is odd, then η 1 x 1 η s x s p 1 y 1 p s y s + d is even. Since
v 2 ( η 1 x 1 η s x s p 1 y 1 p s y s ) + v 2 ( q τ y 1 y s 1 ) = v y 1 y s + ,
according to Lemma 10, we know it can split until v 2 ( d ) = v y 1 y s + , i.e., when 1 v 2 ( d ) v y 1 y s + , there will be 2 v 2 ( d ) 1 q-cyclotomic cosets modulo d generated by c 2 d / q ( η 1 x 1 η s x s p 1 y 1 p s y s ) , and the length of them will be τ y 1 y s . On the other hand, since
v 2 ( η 1 x 1 η s x s p 1 y 1 p s y s ) + v 2 ( q τ y 1 y s 1 ) > v y 1 y s + ,
according to Lemma 10, c 2 d / q ( η 1 x 1 η s x s p 1 y 1 p s y s + d ) can also split until v 2 ( d ) = v y 1 y s + , i.e., when 1 v 2 ( d ) v y 1 y s + , there will be 2 v 2 ( d ) 1 q-cyclotomic cosets modulo d generated by c 2 d ( η 1 x 1 η s x s p 1 y 1 p s y s + d ) , and the elements in these q-cyclotomic cosets are all even. Noting that { i 1 , , i α ( y ) } is the subset of { 1 , , s } such that y i j = 0 for j = 1 , , α ( y ) , we can easily see that when 1 v 2 ( d ) v y 1 y s + , there will be
2 v 2 ( d ) 1 ( e 0 ˜ e 0 + 1 ) [ j = 1 α ( y ) ( e i j ˜ e i j + 1 ) ] + 2 v 2 ( d ) 1 [ j = 1 α ( y ) ( e i j ˜ e i j + 1 ) ]
irreducible factors of x n 1 associated with y = ( y 1 , , y s ) .
When v 2 ( d ) = v y 1 y s + + 1 , the q-cyclotomic cosets modulo d generated by
c 2 d / q ( η 1 x 1 η s x s p 1 y 1 p s y s )
are stable, and the q-cyclotomic cosets modulo d generated by c 2 d / q ( η 1 x 1 η s x s p 1 y 1 p s y s + d ) will split into 2 v y 1 y s + q-cyclotomic cosets. Now, we only need to consider the number of q-cyclotomic cosets modulo d generated by c 2 d / q ( η 1 x 1 η s x s p 1 y 1 p s y s + d ) . When v 2 ( d ) = v y 1 y s + + 2 , there will be 1 2 · 2 v y 1 y s + stable q-cyclotomic cosets and the other 1 2 · v y 1 y s + q-cyclotomic cosets will split into 2 v y 1 y s + q-cyclotomic cosets modulo d. Continuing this process, when v 2 ( d ) v y 1 y s + + 1 , there will be ( v 2 ( d ) v y 1 y s + 1 ) · 2 v y 1 y s + 1 + 2 v y 1 y s + q-cyclotomic cosets modulo d. Furthermore, the number of irreducible factors of x n 1 associated with y = ( y 1 y s ) is
2 v y 1 y s + 1 ( e 0 ˜ e 0 + 1 ) [ j = 1 α ( y ) ( e i j ˜ e i j + 1 ) ] + [ ( v 2 ( d ) v y 1 y s + 1 ) · 2 v y 1 y s + 1 + 2 v y 1 y s + ] [ j = 1 α ( y ) ( e i j ˜ e i j + 1 ) ] .
If η 1 x 1 η s x s p 1 y 1 p s y s is even and η 1 x 1 η s x s p 1 y 1 p s y s + d is odd, the proof is similar. Now we conclude the proof of this proposition. □
Proposition 5. 
For any y = ( y 1 , , y s ) , where ( y , x ) Σ , if q τ y 1 y s 3 ( mod 4 ) , the number of irreducible factors of x n 1 associated with y = ( y 1 , , y s ) is
κ y = ( e 0 ˜ e 0 + 1 ) [ j = 1 α ( y ) ( e i j ˜ e i j + 1 ) ] + j = 1 α ( y ) ( e i j ˜ e i j + 1 ) , v 2 ( d ) = 1 ; ( e 0 ˜ e 0 + 1 ) [ j = 1 α ( y ) ( e i j ˜ e i j + 1 ) ] + 2 · j = 1 α ( y ) ( e i j ˜ e i j + 1 ) , v 2 ( d ) = 2 ; 2 v 2 ( d ) 2 ( e 0 ˜ e 0 + 1 ) [ j = 1 α ( y ) ( e i j ˜ e i j + 1 ) ] + ( 2 v 2 ( d ) 2 + 1 ) [ j = 1 α ( y ) ( e i j ˜ e i j + 1 ) ] , 3 v 2 ( d ) v y 1 y s + 1 ; 2 v y 1 y s 1 ( e 0 ˜ e 0 + 1 ) [ j = 1 α ( y ) ( e i j ˜ e i j + 1 ) ] + [ ( v 2 ( d ) v y 1 y s 2 ) · 2 v y 1 y s 1 + 2 v y 1 y s + 1 ] [ j = 1 α ( y ) ( e i j ˜ e i j + 1 ) ] , v 2 ( d ) v y 1 y s + 2 .
Proof. 
For any ( y , x ) = ( y 1 , , y s , x 1 , , x s ) Σ , when v 2 ( d ) = 1 , there will be two q-cyclotomic cosets modulo d
c d / q ( η 1 x 1 η s x s p 1 y 1 p s y s ) , c n / q ( η 1 x 1 η s x s p 1 y 1 p s y s + d )
generated by c d / q ( η 1 x 1 η s x s p 1 y 1 p s y s ) , and there is one among c d / q ( η 1 x 1 η s x s p 1 y 1 p s y s ) and c d / q ( η 1 x 1 η s x s p 1 y 1 p s y s + d ) whose elements are all even, while the other has elements that are all odd. Suppose that η 1 x 1 η s x s p 1 y 1 p s y s is odd and η 1 x 1 η s x s p 1 y 1 p s y s + d is even. Since
v 2 ( η 1 x 1 η s x s p 1 y 1 p s y s ) + v 2 ( q τ y 1 y s 1 ) = 1 ,
it will be stable when v 2 ( d ) = 2 , and the size of c 2 2 d ( η 1 x 1 η s x s p 1 y 1 p s y s ) is 2 τ y 1 y s . From the lift-the-exponent lemma,
v 2 ( η 1 x 1 η s x s p 1 y 1 p s y s ) + v 2 ( q 2 τ y 1 y s 1 ) = 0 + v 2 ( q τ y 1 y s + 1 ) + 1 = v y 1 y s + 1 ,
and we can easily see that the q-cyclotomic cosets c 2 2 d ( η 1 x 1 η s x s p 1 y 1 p s y s ) will split until v 2 ( d ) = v y 1 y s + 1 , i.e., when 3 v 2 ( d ) v y 1 y s + 1 , there will be 2 v 2 ( d ) 2 q-cyclotomic cosets modulo d generated by c 2 2 d / q ( η 1 x 1 η s x s p 1 y 1 p s y s ) . On the other hand, since
v 2 ( η 1 x 1 η s x s p 1 y 1 p s y s + d ) + v 2 ( q 2 τ y 1 y s 1 ) = 1 + v y 1 y s + 1 = 2 + v y 1 y s . > v y 1 y s + 1 ,
for any 3 v 2 ( d ) v y 1 y s + 1 , there will be 1 + 2 v 2 ( d ) 2 q-cyclotomic cosets modulo d generated by c 2 2 d / q ( η 1 x 1 η s x s p 1 y 1 p s y s + d ) . If all elements in these q-cyclotomic cosets are even, we have that the number of the irreducible factors of x n 1 is
2 v 2 ( d ) 2 ( e 0 ˜ e 0 + 1 ) [ j = 1 α ( y ) ( e i j ˜ e i j + 1 ) ] + ( 2 v 2 ( d ) 2 + 1 ) [ j = 1 α ( y ) ( e i j ˜ e i j + 1 ) ] .
When v 2 ( d ) = v y 1 y s + 2 , the q-cyclotomic cosets modulo d generated by
c 2 d / q ( η 1 x 1 η s x s p 1 y 1 p s y s )
are stable, and the q-cyclotomic cosets modulo d generated by
c 2 d / q ( η 1 x 1 η s x s p 1 y 1 p s y s + d )
will split into 1 + 2 v y 1 y s q-cyclotomic cosets modulo d. When v 2 ( d ) v y 1 y s + 3 , we only need to consider the q-cyclotomic cosets modulo d generated by
c 2 2 d ( η 1 x 1 η s x s p 1 y 1 p s y s + d ) ,
and when v 2 ( d ) = v y 1 y s + 3 , there will be 2 v y 1 y s 1 + 1 q-cyclotomic cosets that are stable, and the other 2 v y 1 y s 1 q-cyclotomic cosets will split into 2 v y 1 y s q-cyclotomic cosets modulo 2 d , and so on. When v 2 ( d ) v y 1 y s + 2 , there will be
[ ( v 2 ( d ) v y 1 y s 2 ) · 2 v y 1 y s 1 + 2 v y 1 y s + 1 ] [ j = 1 α ( y ) ( e i j ˜ e i j + 1 ) ]
q-cyclotomic cosets modulo d generated by
c 2 d / q ( η 1 x 1 η s x s p 1 y 1 p s y s + d ) .
Furthermore, the number of irreducible factors of x n 1 associated with y = ( y 1 , y s ) is
2 v y 1 y s 1 ( e 0 ˜ e 0 + 1 ) [ j = 1 α ( y ) ( e i j ˜ e i j + 1 ) ] + [ ( v 2 ( d ) v y 1 y s 2 ) · 2 v y 1 y s 1 + 2 v y 1 y s + 1 ] [ j = 1 α ( y ) ( e i j ˜ e i j + 1 ) ] .
If η 1 x 1 η s x s p 1 y 1 p s y s is even and η 1 x 1 η s x s p 1 y 1 p s y s + d is odd, the proof is similar. Now we conclude the proof of this proposition. □
Theorem 1. 
The notations are defined above. When q 1 ( mod 4 ) , the number of irreducible factors of x n 1 is
κ = 0 y 1 e 1 0 y s e s · κ y · i = 1 s [ p i e i y i 1 ( p i 1 ) ] lcm ( f 1 , y 1 , , f s , y s ) .
When q 3 ( mod 4 ) , the number of irreducible factors of x n 1 is
κ = y 1 = e 1 y s = e s · κ y · i = s + 1 s [ p i e i y i 1 ( p i 1 ) ] lcm ( f s + 1 , , f s , y s ) + 0 y 1 e 1 1 0 y s e s 1 0 y s + 1 e s + 1 0 y s e s · κ y · i = 1 s [ p i e i y i 1 ( p i 1 ) ] lcm ( f 1 , y 1 , , f s , y s ) .
Proof. 
If q 1 ( mod 4 ) , for any y = ( y 1 , , y s ) , where ( y , x ) Σ , q τ y 1 y s 1 ( mod 4 ) . Then, by applying Lemma 8, we have that the number of q-cyclotomic cosets modulo d are
0 y 1 e 1 0 y s e s g 1 , y 1 · g 2 , y 1 gcd ( f 1 , y 1 , f 2 , y 2 ) g s 1 , y s 1 · gcd ( lcm ( f 1 , y 1 , , f s 1 , y s 1 ) , f s , y s ) = 0 y 1 e 1 0 y s e s ϕ ( p 1 e 1 y 1 ) f 1 , y 1 · ϕ ( p 2 e 2 y 2 ) f 2 , y 2 · gcd ( f 1 , y 1 , f 2 , y 2 ) ϕ ( p s e s y s ) f s , y s · f s , y s · lcm ( f 1 , y 1 , , f s 1 , y s 1 , f s , y s ) lcm ( f 1 , y 1 , , f s , y s ) = 0 y 1 e 1 0 y s e s · i = 1 s [ p i e i y i 1 ( p i 1 ) ] lcm ( f 1 , y 1 , , f s , y s ) .
By applying Proposition 4, we can easily see that the irreducible factors of x n 1 when q 1 ( mod 4 ) are
0 y 1 e 1 0 y s e s · κ y · i = 1 s [ p i e i y i 1 ( p i 1 ) ] lcm ( f 1 , y 1 , , f s , y s ) .
When q 3 ( mod 4 ) , for any y = ( y 1 , , y s ) , where ( y , x ) Σ , if τ y 1 y s is odd, then q τ y 1 y s 3 ( mod 4 ) ; if τ y 1 y s is even, then q τ y 1 y s 1 ( mod 4 ) . From Proposition 3 and similar to q 1 ( mod 4 ) , we have that the number of irreducible factors of x n 1 when q 3 ( mod 4 ) is
y 1 = e 1 y s = e s · κ y · i = s + 1 s [ p i e i y i 1 ( p i 1 ) ] lcm ( f s + 1 , , f s , y s ) + 0 y 1 e 1 1 0 y s e s 1 0 y s + 1 e s + 1 0 y s e s · κ y · i = 1 s [ p i e i y i 1 ( p i 1 ) ] lcm ( f 1 , y 1 , , f s , y s ) .

3.2. The Number of Irreducible Factors of x n λ

Let n = n 1 · n 2 , where rad ( n 1 ) ord ( λ ) , gcd ( n 2 , ord ( λ ) ) = 1 , and let n 2 = 2 e 0 ˜ p 1 e 1 ˜ p s e s ˜ . Set
ω = ord rad ( n ) ( q ) , if 4 n or q ord rad ( n ) ( q ) 1 ( mod 4 ) ; 2 ord rad ( n ) ( q ) , otherwise .
d 1 = gcd ( n 1 , q ω 1 ord ( λ ) ) , d 2 = gcd ( n 2 , q ω 1 ) = 2 e 0 p 1 e 1 p s e s , d 2 = p 1 e 1 p s e s . If 4 d 1 or q 1 ( mod 4 ) , then s = gcd ( n 1 , q ω 1 ord ( λ ) ) gcd ( n 1 , q 1 ord ( λ ) ) ; otherwise, s = 2 gcd ( n 1 , q ω 1 ord ( λ ) ) gcd ( n 1 , q 1 ord ( λ ) ) . m is a positive integer satisfying m = 1 if λ = 1 or m n 2 1 ( mod ord ( λ ) · d 1 ) .
Without loss of generality, we also assume that the odd primes p 1 , , p s are ranked in such a way that
ord p 1 ( q ) , ord p 2 ( q ) , , ord p s ( q )
are even, and
ord p s + 1 ( q ) , ord p s + 2 ( q ) , , ord p s ( q )
are odd.
Fix a system of primitive roots ( η 1 , , η s ) modulo d = p 1 e 1 p s e s , Let Σ = Σ ( d ; q ) be the set of applicable 2 s -tuples, i.e., the tuples ( y 1 , , y s , x 1 , , x s ) , such that 0 y i e i and 0 x 1 g 1 , y 1 1 and 0 x i g i , y i · gcd ( lcm ( f 1 , y 1 , , f i 1 , y i 1 ) , f i , y i ) for i = 2 , , m .
For any ( y , x ) = ( y 1 , , y s , x 1 , , x s ) Σ , define Γ ( y ) = Γ ( y 1 , , y s ) as the set of all s-tuples u = ( u 1 , , u s ) of integers satisfying 0 u i e i ˜ e i and u i = 0 when y i 0 . For any y = ( y 1 , , y s ) , where ( y , x ) Σ , let { i 1 , , i α ( y ) } consist of indices i such that y i = 0 ,
Now, we calculate the number of irreducible factors of x n λ . We begin with the easier cases where e 0 ˜ = 0 and e 1 ˜ = 1.
Proposition 6. 
(1) 
If e 0 ˜ = 0 , then x n λ can be factored into the irreducible factors over F q as
x n λ = z { 0 , , d 1 1 } / ( y , x ) Σ u Γ ( y ) a = 0 gcd ( τ y 1 y s , s ) 1 S z , y , x , u , a ,
where, for every z { 0 , , d 1 1 } / , ( y , x ) = ( y 1 , , y s , x 1 , , x s ) Σ , u Γ ( y ) , 0 a gcd ( τ y 1 y s , s ) 1 , the irreducible polynomial S z , y , x , u , a is given by
S z , y , x , u , a = j = 0 lcm ( τ y 1 y s , s ) · ( 1 ) lcm ( τ y 1 y s , s ) j R { 0 , lcm ( τ y 1 y s , s ) 1 } | R | = lcm ( τ y 1 y s , s ) j · r R ζ d 2 η 1 x 1 η s x s p 1 y 1 p s y s q a ( ζ d 1 z b ) m p 1 u 1 p s u s q r · x n 1 d 1 j p 1 u 1 p s u s .
(2) 
The number of irreducible factors of x n λ is
κ = 0 y 1 e 1 0 y s e s i = 1 s [ p i e i y i 1 ( p i 1 ) ] lcm ( f 1 , y 1 , , f s , y s ) [ j = 1 α ( y ) ( e i j ˜ e i j + 1 ) ] · d 1 s · gcd ( τ y 1 y s , s ) .
Proposition 7. 
(1) 
If e 0 ˜ = 1 , then x n λ can be factored into the irreducible factors over F q as
x n λ = z { 0 , , d 1 1 } / ( y , x ) Σ u Γ ( y ) a = 0 gcd ( τ y 1 y s , s ) 1 S z , y , x , u , a · ( S z , y , x , u , a ) ,
where, for every z { 0 , , d 1 1 } / , ( y , x ) = ( y 1 , , y s , x 1 , , x s ) Σ , u Γ ( y ) , 0 a gcd ( τ y 1 y s , s ) 1 , the irreducible polynomial S z , y , x , u , a is given by
S z , y , x , u , a = j = 0 lcm ( τ y 1 y s , s ) · ( 1 ) lcm ( τ y 1 y s , s ) j R { 0 , lcm ( τ y 1 y s , s ) 1 } | R | = lcm ( τ y 1 y s , s ) j · r R ζ d 2 η 1 x 1 η s x s p 1 y 1 p s y s q a ( ζ d 1 z b ) m p 1 u 1 p s u s q r · x n 1 d 1 j p 1 u 1 p s u s .
and
S z , y , x , u , a = j = 0 lcm ( τ y 1 y s , s ) · ( 1 ) lcm ( τ y 1 y s , s ) j R { 0 , lcm ( τ y 1 y s , k ) 1 } | R | = lcm ( τ y 1 y s , k ) j · r R ζ d 2 η 1 x 1 η s x s p 1 y 1 p s y s q a ( ζ d 1 z b ) m p 1 u 1 p s u s q r · x n 1 d 1 j p 1 u 1 p s u s .
(2) 
The number of irreducible factors of x n λ is 2 κ , where
κ = 0 y 1 e 1 0 y s e s i = 1 s [ p i e i y i 1 ( p i 1 ) ] lcm ( f 1 , y 1 , , f s , y s ) [ j = 1 α ( y ) ( e i j ˜ e i j + 1 ) ] · d 1 s · gcd ( τ y 1 y s , s ) .
We still need to consider the case where e 0 ˜ 2 . Fix an applicable 2 s -tuple ( y , x ) = ( y 1 , , y s , x 1 , , x s ) Σ and an s-tuple u = ( u 1 , , u s ) Γ ( y ) . Let v y 1 y s + = v 2 ( q τ y 1 y s 1 ) , v y 1 y s = v 2 ( q τ y 1 y s + 1 ) . By combining Proposition 3, Proposition 4, Proposition 5, and Lemma 9, we can easily obtain the theorem below.
Theorem 2. 
The notations are defined above. When q 1 ( mod 4 ) , the number of irreducible factors of x n λ is
κ = 0 y 1 e 1 0 y s e s · κ y · i = 1 s [ p i e i y i 1 ( p i 1 ) ] lcm ( f 1 , y 1 , , f s , y s ) · d 1 s · gcd ( τ y 1 , , y s , s ) .
When q 3 ( mod 4 ) , the number of irreducible factors of x n λ is
κ = y 1 = e 1 y s = e s · κ y · i = s + 1 s [ p i e i y i 1 ( p i 1 ) ] lcm ( f s + 1 , , f s , y s ) · d 1 s · gcd ( τ y 1 , , y s , s ) + 0 y 1 e 1 1 0 y s e s 1 0 y s + 1 e s + 1 0 y s e s · κ y · i = 1 s [ p i e i y i 1 ( p i 1 ) ] lcm ( f 1 , y 1 , , f s , y s ) · d 1 s · gcd ( τ y 1 , , y s , s ) .

4. Application

Let F q be a finite field, and let n be a positive integer such that gcd ( n , q ) = 1 . Denote by F ( x n 1 ) the set of all distinct monic irreducible factors of x n 1 over F q .
Based on the theories in [12], we now give the necessary and sufficient conditions for
F ( x n 1 ) = 6
and the irreducible factorization of x n 1 in these cases.
(i)
If the number of factors of n is 6, the possible values of n are p 1 5 , 2 5 , p 1 2 p 2 , 2 2 p 1 , 2 p 1 2 . The unique positive integer solution of the equation
x 1 + x 2 + x 3 + x 4 + x 5 + x 6 = 6
is
x 1 = x 2 = x 3 = x 4 = x 5 = x 6 = 1 .
Case 1: If n = 2 5 ,
x n 1 = Φ 1 ( x ) Φ 2 ( x ) Φ 4 ( x ) Φ 8 ( x ) Φ 16 ( x ) Φ 32 ( x ) .
Since 8 , 16 , 32 have no primitive roots, we have that Φ 8 ( x ) , Φ 16 ( x ) , Φ 32 ( x ) are reducible over F q . Then,
F ( x n 1 ) > 6 .
Case 2: If n = p 1 2 p 2 ,
x n 1 = Φ 1 ( x ) Φ p 1 ( x ) Φ p 2 ( x ) Φ p 1 p 2 ( x ) Φ p 1 2 ( x ) Φ p 1 2 p 2 ( x ) .
Since p 1 p 2 and p 1 2 p 2 have no primitive roots, we have that Φ p 1 p 2 ( x ) and Φ p 1 2 p 2 ( x ) are reducible over F q and
F ( x n 1 ) > 6 .
Case 3: If n = 2 2 p 1 ,
x n 1 = Φ 1 ( x ) Φ 2 ( x ) Φ p 1 Φ 2 2 ( x ) Φ 2 p 1 ( x ) Φ 2 2 p 1 ( x ) .
Since 2 2 p 1 has no primitive root, we that have Φ 2 2 p 1 is reducible over F q and
F ( x n 1 ) > 6 .
Case 4: If n = p 1 5 , we have
x n 1 = Φ 1 ( x ) Φ p 1 ( x ) Φ p 1 2 ( x ) Φ p 1 3 ( x ) Φ p 1 4 ( x ) Φ p 1 5 ( x )
and
ϕ ( p 1 ) d p 1 = ϕ ( p 1 2 ) d p 1 2 = ϕ ( p 1 3 ) d p 1 3 = ϕ ( p 1 4 ) d p 1 4 = ϕ ( p 1 5 ) d p 1 5 .
Since
ord rad ( n ) ( q ) = ord p 1 ( q ) = ϕ ( p 1 )
and
d = gcd ( n , q ϕ ( p 1 ) 1 ) = gcd ( p 1 5 , q ϕ ( p 1 ) 1 ) = p 1 .
According to Lemma 8, since
g 1 , 0 = ϕ ( p 1 ) f 1 , 0 = ϕ ( p 1 ) ord p 1 ( q ) = 1 ,
we have that the q-cyclotomic cosets modulo d are
c d / q ( p 1 0 ) , c d / q ( p 1 ) .
Further, according to Lemma 11, we have that the irreducible factorization of x n 1 is
x n 1 = Φ 1 ( x ) Φ p 1 ( x ) Φ p 1 2 ( x ) Φ p 1 3 ( x ) Φ p 1 4 ( x ) Φ p 1 5 ( x ) = ( x 1 ) · [ j = 0 τ 0 1 ( x ζ d q j ) ] · [ j = 0 τ 0 1 ( x p 1 ζ d q j ) ] · [ j = 0 τ 0 1 ( x p 2 ζ d q j ) ] · [ j = 0 τ 0 1 ( x p 3 ζ d q j ) ] · [ j = 0 τ 0 1 ( x 4 ζ d q j ) ] ,
where τ 0 = ϕ ( p 1 ) , ζ d is the d-th primitive root, and d = p 1 .
Case 5: If n = 2 p 1 2 ,
x n 1 = Φ 1 ( x ) Φ 2 ( x ) Φ p 1 ( x ) Φ 2 p 1 ( x ) Φ p 1 2 ( x ) Φ 2 p 1 2 ( x )
and
ϕ ( p 1 ) d p 1 = ϕ ( 2 p 1 ) d 2 p 1 = ϕ ( p 1 2 ) d p 1 2 = ϕ ( 2 p 1 2 ) d 2 p 1 2 = 1 .
Since
ord rad ( n ) ( q ) = ord 2 p 1 ( q ) = ϕ ( p 1 )
and
d = gcd ( n , q ϕ ( p 1 ) 1 ) = gcd ( 2 p 1 2 , q ϕ ( p 1 ) 1 ) = 2 p 1 .
According to Lemma 8, since
g 1 , 0 = ϕ ( p 1 ) f 1 , 0 = ϕ ( p 1 ) ord p 1 ( q ) = 1 ,
we have that the q-cyclotomic cosets modulo p 1 are
c d / q ( p 1 0 ) , c d / q ( p 1 ) ,
and according to Lemma 10, the q-cyclotomic cosets modulo d are
c d / q ( 1 ) , c d / q ( 1 + p 1 ) , c d / q ( p 1 ) , c d / q ( 2 p 1 ) .
By applying Lemma 11, we have that the irreducible factorization of x n 1 is
x n 1 = Φ 1 ( x ) Φ 2 ( x ) Φ p 1 ( x ) Φ 2 p 1 ( x ) Φ p 1 2 ( x ) Φ 2 p 1 2 ( x ) = ( x 1 ) ( x + 1 ) · [ j = 0 τ 0 1 ( x ζ d q j ) ] · [ j = 0 τ 0 1 ( x ζ d ( 1 + p 1 ) q j ) ] · [ j = 0 τ 0 1 ( x p 1 ζ d q j ) ] · [ j = 0 τ 0 1 ( x p 1 ζ d ( 1 + p 1 ) q j ) ] ,
where τ 0 = ϕ ( p 1 ) , ζ d is a d-th primitive root, and d = 2 p 1 .
(ii)
If the number of factors of n is 5, then the possible values of n are p 1 4 , 2 4 . The unique positive integer solution of the equation
x 1 + x 2 + x 3 + x 4 + x 5 = 6
is
x 1 = x 2 = x 3 = x 4 = 1 , x 5 = 2 .
Case 1: If n = 2 4 ,
x n 1 = Φ 1 ( x ) Φ 2 ( x ) Φ 4 ( x ) Φ 8 ( x ) Φ 16 ( x ) .
Since 8 and 16 have no primitive roots, we have that at least one of Φ 8 ( x ) and Φ 16 ( x ) is reducible over F q and
F ( x n 1 ) > 6 .
Case 2: If n = p 1 4 ,
x n 1 = Φ 1 ( x ) Φ p 1 ( x ) Φ p 1 2 ( x ) Φ p 1 3 ( x ) Φ p 1 4 ( x )
and
ϕ ( p 1 ) d p 1 = ϕ ( p 1 3 ) d p 1 3 = ϕ ( p 1 4 ) d p 1 4 = 1 , ϕ ( p 1 2 ) d p 1 2 = 2 .
Since ord p 1 2 ( q ) = 1 2 ϕ ( p 1 2 ) , ord p 1 3 = ϕ ( p 1 3 ) , we have
v p 1 ( q 1 2 ϕ ( p 1 ) 1 ) = v p 1 ( q 1 2 ϕ ( p 1 2 ) 1 ) v p 1 ( p 1 ) 1 ,
which contradicts ord p 1 ( q ) = ϕ ( p 1 ) .
(iii)
If the number of factors of n is 4, then the possible values of n are p 1 3 , 2 p 1 , p 1 p 1 , 8 . The positive integer solution of the equation
x 1 + x 2 + x 3 + x 4 = 6
is
x 1 = x 2 = x 3 = 1 , x 4 = 3 o r x 1 = x 2 = 1 , x 3 = x 4 = 2 .
Case 1: If n = p 1 3 , we have
x n 1 = Φ 1 ( x ) Φ p 1 ( x ) Φ p 1 2 ( x ) Φ p 1 3 ( x ) .
(1)
When
ϕ ( p 1 ) d p 1 = ϕ ( p 1 3 ) d p 1 3 = 1 , ϕ ( p 1 2 ) d p 1 2 = 3 ,
we have
v p 1 ( q 1 3 ϕ ( p 1 ) 1 ) = v p 1 ( q 1 3 ϕ ( p 1 2 ) 1 ) v p 1 ( p 1 ) 1 ,
which contradicts ord p 1 ( q ) = ϕ ( p 1 ) .
(2)
When
ϕ ( p 1 ) d p 1 = 1 , ϕ ( p 1 2 ) d p 1 2 = ϕ ( p 1 3 ) d p 1 3 = 2 ,
we have
v p 1 ( q 1 2 ϕ ( p 1 ) 1 ) = v p 1 ( q 1 2 ϕ ( p 1 2 ) 1 ) v p 1 ( p 1 ) 1 ,
which contradicts ord p 1 ( q ) = ϕ ( p 1 ) .
Case 2: If n = 2 p 1 , we have
x n 1 = Φ 1 ( x ) Φ 2 ( x ) Φ p 1 ( x ) Φ 2 p 1 ( x ) .
(1)
When
ϕ ( p 1 ) d p 1 = 1 , ϕ ( 2 p 1 ) d 2 p 1 = 3 ,
we have
v p 1 ( q 1 3 ϕ ( p 1 ) 1 ) = v p 1 ( q 1 3 ϕ ( p 1 2 ) 1 ) v p 1 ( p 1 ) 1 ,
which contradicts ord p 1 ( q ) = ϕ ( p 1 ) .
(2)
When
ϕ ( p 1 ) d p 1 = 3 , ϕ ( 2 p 1 ) d 2 p 1 = 1 ,
and since gcd ( n , q ) = 1 , q is odd, we have
2 p 1 q 1 3 ϕ ( p 1 ) 1 ,
which contradicts ord 2 p 1 ( q ) = ϕ ( p 1 ) .
(3)
When
ϕ ( p 1 ) d p 1 = ϕ ( 2 p 1 ) d 2 p 1 = 2 ,
since
ord rad ( n ) ( q ) = ord 2 p 1 ( q ) = 1 2 ϕ ( p 1 )
and
d = gcd ( n , q 1 2 ϕ ( p 1 ) 1 ) = gcd ( 2 p 1 , q 1 2 ϕ ( p 1 ) 1 ) = 2 p 1 .
According to Lemma 8, since
g 1 , 0 = ϕ ( p 1 ) f 1 , 0 = ϕ ( p 1 ) ord p 1 ( q ) = 2 ,
we have that the q-cyclotomic cosets modulo p 1 are
c p 1 / q ( η 1 0 p 1 0 ) , c p 1 / q ( η 1 p 1 0 ) , c p 1 / q ( p 1 ) ,
where η 1 is a primitive root modulo p 1 . Further, according to Lemma 10, the q-cyclotomic cosets modulo d are
c d / q ( 1 ) , c d / q ( 1 + p 1 ) , c d / q ( η 1 ) , c d / q ( η 1 + p 1 ) , c d / q ( p 1 ) , c d / q ( 2 p 1 ) .
By applying Lemma 11, we have that the irreducible factorization of x n 1 is
x n 1 = ( x 1 ) ( x + 1 ) · [ j = 0 τ 0 1 ( x ζ d q j ) ] · [ j = 0 τ 0 1 ( x ζ d ( 1 + p 1 ) q j ) ] · [ j = 0 τ 0 1 ( x ζ d η 1 q j ) ] · [ j = 0 τ 0 1 ( x ζ d ( η 1 + p 1 ) q j ) ] .
Case 3: If n = p 1 p 2 , we have
x n 1 = Φ 1 ( x ) Φ p 1 ( x ) Φ p 2 ( x ) Φ p 1 p 2 ( x ) ,
and since p 1 p 2 have no primitive roots, we have the following cases:
(1)
When
ϕ ( p 1 ) d p 1 = ϕ ( p 2 ) d p 2 = 1 , ϕ ( p 1 p 2 ) d p 1 p 2 = 3 ,
since
ord p 1 ( q ) = ϕ ( p 1 ) , ord p 2 ( q ) = ϕ ( p 2 ) ,
we have
ord p 1 p 2 ( q ) = lcm ( ϕ ( p 1 ) , ϕ ( p 2 ) ) = ϕ ( p 1 ) ϕ ( p 2 ) gcd ( ϕ ( p 1 ) , ϕ ( p 2 ) ) ,
and since
2 gcd ( ϕ ( p 1 ) , ϕ ( p 2 ) ) ,
there exists a contradiction with ord p 1 p 2 ( q ) = 1 3 ϕ ( p 1 p 2 ) .
(2)
When
ϕ ( p 1 ) d p 1 , ϕ ( p 2 ) d p 2 = ϕ ( p 1 p 2 ) d p 1 p 2 = 2 ,
since
ord rad ( n ) ( q ) = ord p 1 p 2 ( q ) = 1 2 ϕ ( p 1 p 2 )
and
d = gcd ( n , q 1 2 ϕ ( p 1 p 2 ) 1 ) = p 1 p 2 .
According to Lemma 8, since
g 1 , 0 = ϕ ( p 1 ) f 1 , 0 = 1 , g 2 , 0 = ϕ ( p 2 ) f 2 , 0 = 2 ,
we have that the q-cyclotomic cosets modulo d are
c d / q ( η 1 0 η 2 0 p 1 0 p 2 0 ) , c d / q ( η 1 0 η 2 p 1 0 p 2 0 ) , c d / q ( η 1 0 η 2 0 p 1 p 2 0 ) , c d / q ( η 1 0 η 2 p 1 p 2 0 ) , c d / q ( η 1 0 η 2 0 p 1 0 p 2 ) , c d / q ( η 1 0 η 2 0 p 1 p 2 )
and
τ 00 = 1 2 ϕ ( p 1 p 1 ) , τ 01 = ϕ ( p 1 ) , τ 10 = 1 2 ϕ ( p 2 ) , τ 11 = 1 ,
where η 1 , η 2 are primitive roots modulo p 1 , p 2 , respectively. By applying Lemma 11, we have that the irreducible factorization of x n 1 is
x n 1 = ( x 1 ) · [ j = 0 τ 00 1 ( x ζ d η 2 q j ) ] · [ j = 0 τ 00 1 ( x ζ d q j ) ] · [ j = 0 τ 10 1 ( x ζ d p 1 q j ) ] · [ j = 0 τ 10 1 ( x ζ d η 2 p 1 q j ) ] · [ j = 0 τ 01 1 ( x ζ d p 2 q j ) ] ,
where ζ d is a primitive d-th root and d = p 1 p 2 .
Case 4: If n = 8 , then
x 8 1 = Φ 1 ( x ) Φ 2 ( x ) Φ 4 ( x ) Φ 8 ( x ) .
(1)
When
ϕ ( 2 ) d 2 = ϕ ( 4 ) d 4 = 1 , ϕ ( 8 ) d 8 = 3 ,
it follows that
ord 8 ( q ) = 1 3 ϕ ( 8 ) ,
which is not an integer. Hence, there exists a contradiction.
(2)
When
ϕ ( 4 ) d 4 = ϕ ( 8 ) d 8 = 2 ,
it follows that
ord 4 ( q ) = 1 2 ϕ ( 4 ) = 1 ,
ord 8 ( q ) = 1 2 ϕ ( 8 ) = 2
and
d = gcd ( n , q 1 ) = 4 .
Then, we have that the irreducible factorization of x n 1 is
x n 1 = ( x 1 ) ( x + 1 ) ( x ζ 4 ) ( x ζ 4 3 ) ( x 2 ζ 4 ) ( x 2 ζ 4 3 ) ,
where ζ 4 is a primitive 4th root.
(iv)
If the number of factors of n is 3, then the possible values of n are 4 , p 1 2 . The positive integer solution of the equation
x 1 + x 1 + x 3 = 6
is
x 1 = x 2 = 1 , x 3 = 4 o r x 1 = 1 , x 2 = 2 , x 3 = 3 .
Case 1: If n = 4 , the number of irreducible factors of x 4 1 is 4 at most.
Case 2: If n = p 1 2 , then we have
x n 1 = Φ 1 ( x ) Φ p 1 ( x ) Φ p 1 2 ( x )
(1)
When
ϕ ( p 1 ) d p 1 = 1 , ϕ p 1 2 d p 1 2 = 4 ,
it follows that
v p 1 ( q 1 4 ϕ ( p 1 ) 1 ) = v p 1 ( p 1 ) + v p 1 ( q 1 4 ϕ ( p 1 2 ) 1 ) 1 ,
which contradicts ord p 1 ( q ) = ϕ ( p 1 ) .
(2)
When
ϕ ( p 1 ) d p 1 = 4 , ϕ ( p 1 2 ) d p 1 2 = 1 ,
it follows that
v p 1 ( q 1 4 ϕ ( p 1 2 ) 1 ) = v p 1 ( p 1 ) + v p 1 ( q 1 4 ϕ ( p 1 ) 1 ) 2 ,
which contradicts ord p 1 2 ( q ) = ϕ ( p 1 2 ) .
(3)
When
ϕ ( p 1 ) d p 1 = 2 , ϕ ( p 1 2 ) d p 1 2 = 3 ,
it follows that
v p 1 ( q 1 3 ϕ ( p 1 2 ) 1 ) = v p 1 ( p 1 ) + v p 1 ( q 1 3 ϕ ( p 1 ) 1 ) 2 ,
which contradicts ord p 1 ( q ) = 1 2 ϕ ( p 1 ) .
(4)
When
ϕ ( p 1 ) d p 1 = 3 , ϕ ( p 1 2 ) d p 1 2 = 2 ,
there is a contradiction in the same way.
(v)
If the number of factors of n is 2, then the possible value of n is p 1 . The unique solutions of the equation
x 1 + x 2 = 6
are
x 1 = 1 , x 2 = 5 ,
and
ϕ ( p 1 ) d p 1 = 5 .
Further, we have
ord p 1 ( q ) = 1 5 ϕ ( p 1 ) ,
d = n , q 1 5 ϕ ( p 1 ) 1 = p 1
and
g 1 , 0 = ϕ ( p 1 ) d f 1 , 0 = 5 , τ 0 = 1 5 ϕ ( p 1 ) .
Then, the q-cyclotomic cosets modulo p 1 are
c d / q ( η 1 0 p 1 0 ) , c d / q ( η 1 1 p 1 0 ) , c d / q ( η 1 2 p 1 0 ) , c d / q ( η 1 3 p 1 0 ) , c d / q ( η 1 4 p 1 0 ) , c d / q ( η 1 0 p 1 1 ) ,
where η 1 is a primitive root modulo p 1 . By applying Lemma 11, we have that the irreducible factorization of x n 1 is
x n 1 = ( x 1 ) · [ j = 0 τ 0 1 ( x ζ d q j ) ] · [ j = 0 τ 0 1 ( x ζ d η 1 q j ) ] · [ j = 0 τ 0 1 ( x ζ d η 1 2 q j ) ] · [ j = 0 τ 0 1 ( x ζ d η 1 3 q j ) ] · [ j = 0 τ 0 1 ( x ζ d η 1 4 q j ) ] ,
where ζ d is the d-th primitive root.

Author Contributions

Two authors contributed equally. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the Natural Science Foundation of Beijing Municipal (M23017).

Data Availability Statement

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Chen, B.; Ling, S.; Zhang, G. Enumeration formulas for self-dual cyclic codes. Finite Field Appl. 2016, 42, 1–22. [Google Scholar] [CrossRef]
  2. Ghazi Nezami, S.; Khat, L.D. (In English: Lifting The Exponent Lemma). Published on October 2009. Available online: http://imo09.blogfa.com/page/2khat.aspx (accessed on 25 November 2024).
  3. Yue, D.; Hu, Z. A new method for the calculation of the leader elements of cyclotomic cosets. Inf. Secur. Commun. Priv. 1995, 1, 28–32. [Google Scholar]
  4. Chen, B.; Dinh, H.; Liu, H. Repeated-root constacyclic codes of length ℓps and their duals. Discret. Appl. Math. 2014, 177, 60–70. [Google Scholar] [CrossRef]
  5. Chen, B.; Dinh, H.; Liu, H. Repeated-root constacyclic codes of length 2mps. Finite Fields Their Appl. 2015, 33, 137–159. [Google Scholar] [CrossRef]
  6. Liu, L.; Li, L.; Kai, X.; Zhu, S. Reapeated-root constacylic codes of length 3ℓps and their dual codes. Finite Fields Their Appl. 2016, 42, 269–295. [Google Scholar] [CrossRef]
  7. Liu, L.; Li, L.; Wang, L.; Zhu, S. Reapeated-root Constacylic Codes of Length nℓps. Discret. Math. 2017, 340, 2250–2261. [Google Scholar] [CrossRef]
  8. Sharma, A. Repeated-root constacyclic codes of length tps and their dual codes. Cryptogr. Commun. 2015, 7, 229–255. [Google Scholar] [CrossRef]
  9. Sharma, A.; Rani, S. Repeated-root constacyclic codes of length 4mpn. Finite Fields Their Appl. 2016, 40, 163–200. [Google Scholar] [CrossRef]
  10. Wu, H.; Zhu, L. Repeated-root constacyclic codes of length p1 p 2 t ps and their dual codes. Aims Math. 2023, 8, 12793–12818. [Google Scholar] [CrossRef]
  11. Geraci, J.; Bussel, F.V. A Note on Cyclotomic Cosets, an Algorithm for finding Coset Representatives and Size, and a Theorem on the Quantum evaluation of Weight Enumerators for a Certain Class of Cyclic Codes. arXiv 2008, arXiv:cs/0703129. [Google Scholar]
  12. Xie, W.; Zhang, J.; Cao, W. On the number of the irreducible factors of over finite fields. Aims Math. 2024, 9, 23468–23488. [Google Scholar] [CrossRef]
  13. Graner, A. Closed formulas for the factorization of Xn − 1, the n-th cyclotomic polynomials, Xna and f(X) over a finite field for arbitrary positive integer n. arXiv 2024, arXiv:2306.11183v2. [Google Scholar]
  14. Ireland, K.; Rosen, M. A Classical Introduction to Modern Number Theory; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
  15. Hardy, G.; Wright, E. An Introduction to the Theory of Numbers, 5th ed.; Clarendon Press: Oxford, UK, 1984. [Google Scholar]
  16. Zhu, L.; Liu, J.; Wu, H. Explict representatives and sizes of cyclotomic cosets and their application to cyclic codes over finite fields. arXiv 2024, arXiv:2410.12122v1. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Liu, J.; Wu, H. A Note on Factorization and the Number of Irreducible Factors of xnλ over Finite Fields. Mathematics 2025, 13, 473. https://doi.org/10.3390/math13030473

AMA Style

Liu J, Wu H. A Note on Factorization and the Number of Irreducible Factors of xnλ over Finite Fields. Mathematics. 2025; 13(3):473. https://doi.org/10.3390/math13030473

Chicago/Turabian Style

Liu, Jinle, and Hongfeng Wu. 2025. "A Note on Factorization and the Number of Irreducible Factors of xnλ over Finite Fields" Mathematics 13, no. 3: 473. https://doi.org/10.3390/math13030473

APA Style

Liu, J., & Wu, H. (2025). A Note on Factorization and the Number of Irreducible Factors of xnλ over Finite Fields. Mathematics, 13(3), 473. https://doi.org/10.3390/math13030473

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop