A Novel Approach for Improving Reverse Osmosis Model Accuracy: Numerical Optimization for Water Purification Systems
Abstract
:1. Introduction
- What constitutes an effective stopping condition when applying numerical methods to solve problems, and why is it essential to implement such a condition?
- How many iterations are required when employing numerical methods, and what factors influence this number?
- What strategies can be employed to control the number of iterations in numerical methods, and how can they be optimized?
- How can we determine the optimal approximation when seeking a numerical solution, and what are the implications of this approximation on the overall accuracy of the results?
- What is the optimal value for the tolerance parameter in condition (5), and how can it be determined?
- How can we control the accuracy of numerical methods using the absolute error (5) when the exact solution is unknown?
- What approaches can be used to identify the optimal error in numerical methods, and how can this information be leveraged to improve the overall performance of these methods?
- The identification of the optimal iteration of the Romberg integration rule for the RO system, which has significant implications for the efficient solution of this problem.
- The determination of the optimal approximation of the problem, which provides a benchmark for evaluating the accuracy of numerical methods.
- The discovery of the optimal error of the Romberg integration rule for the RO model, which enables the optimization of the numerical method for this specific application.
- The application of dynamical control (6) to regulate the accuracy and efficiency of the numerical method, ensuring that the results are reliable and computationally efficient.
- The utilization of the CADNA library to implement the CESTAC method mentioned in Section 3, which enables the automatic control of accuracy and efficiency in numerical computations.
- The development of a strategy to control the accuracy of numerical methods without requiring knowledge of the exact solution, which is a significant advancement in the field.
- The elimination of the need to specify an epsilon value to control efficiency, which simplifies the implementation of numerical methods and reduces the risk of user error.
- We believe that the research addresses significant gaps in the existing literature and provides innovative solutions to pressing challenges in the field of numerical methods.
2. Romberg Integration Rule
3. Main Idea
Algorithm 1: CESTAC Algorithm |
Step 1--Make the perturbation of the last bit of mantissa to produce samples of G as . Step 2--Find . Step 3--Compute . Step 4--Find the NCSDs of G and applying . Step 5--Print if or . |
- The termination criterion is based on two successive approximations, eliminating the need for an exact solution.
- Unlike floating-point arithmetic, the CESTAC method does not rely on a predefined epsilon value for its stopping condition.
- The CESTAC method avoids unnecessary iterations, which can occur in floating-point arithmetic when using large epsilon values.
- It provides the ability to display the number of common significant digits using the informatical zero sign , a feature not available in floating-point arithmetic.
- The CESTAC method enables the determination of the optimal approximation, error, and step size for numerical procedures, which is not possible with floating-point arithmetic.
- Additionally, the CESTAC method can reveal numerical instabilities that may not be apparent in floating-point arithmetic.
4. Numerical Results
Algorithm 2: CESTAC Algorithm for the RO system |
Step 1: Put ; Step 2: Enter ; Step 3: Do: { Step 3-1: Apply Equation (13) to find the initial approximations; Step 3-2: Calculate other approximations using Equation (15); Step 3-3: Print and ; Step 3-4: ; } while . |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
Abbreviations
RO | Reverse osmosis |
CESTAC | Controle et Estimation Stochastique des Arrondis de Calculs |
CADNA | Control of Accuracy and Debugging for Numerical Applications |
F-PA | Floating-point arithmetic |
References
- Hui, J.; Ling, J.; Dong, H.; Wang, G.; Yuan, J. Distributed parameter modeling for the steam generator in the nuclear power plant. Ann. Nucl. Energy 2021, 152, 107945. [Google Scholar] [CrossRef]
- Garud, R.M.; Kore, S.V.; Kore, V.S.; Kulkarni, G.S. A short review on process and applications of reverse osmosis. Univers. J. Environ. Res. Technol. 2011, 1, 233–238. [Google Scholar]
- Hosseinzadeh, A.; Altaee, A.; Ibra, I.; Zhou, J.L. Modeling and optimization of reverse salt diffusion and water flux in forward osmosis by response surface methodology and artificial neural network. Chem. Eng. Process.-Process. Intensif. 2025, 208, 110140. [Google Scholar] [CrossRef]
- Wang, X.; Sun, X.; Wu, Y.; Gao, F.; Yang, Y. Optimizing reverse osmosis desalination from brackish waters: Predictive approach employing response surface methodology and artificial neural network models. J. Membr. Sci. 2024, 704, 122883. [Google Scholar] [CrossRef]
- Fan, H.; Heiranian, M.; Elimelech, M. The solution-diffusion model for water transport in reverse osmosis: What went wrong? Desalination 2024, 580, 117575. [Google Scholar] [CrossRef]
- Zhai, Y.; Liu, G.; van der Meer, W.G.J. One-Step Reverse Osmosis Based on Riverbank Filtration for Future Drinking Water Purification. Engineering 2022, 9, 27–34. [Google Scholar] [CrossRef]
- Zhang, B.; Jiang, Y.; Fang, F.; Zhang, K. Membrane fouling in reverse-osmosis filters during real drinking water purification: Impact of operation modes and pretreatment. Desalin. Water Treat. 2019, 159, 214–223. [Google Scholar] [CrossRef]
- Jamil, S.; Jeong, S.; Vigneswaran, S. Application of pressure assisted forward osmosis for water purification and reuse of reverse osmosis concentrate from a water reclamation plant. Sep. Purif. Technol. 2016, 171, 182–190. [Google Scholar] [CrossRef]
- Epimakhov, V.N.; Oleinik, M.S. Reverse-Osmosis Filtration Based Water Treatment and Special Water Purification for Nuclear Power Systems. At. Energy 2004, 96, 234–240. [Google Scholar] [CrossRef]
- Goncharuk, V.V.; Osipenko, V.O.; Balakina, M.N. Water purification of nitrates by low-pressure reverse osmosis method. J. Water Chem. Technol. 2013, 35, 71–75. [Google Scholar] [CrossRef]
- Goncharuk, V.V.; Deremeshko, L.A.; Balakina, M.N. Purification of waters containing fluorine by low pressure reverse osmosis for their complex treatment. J. Water Chem. Technol. 2013, 35, 122–127. [Google Scholar] [CrossRef]
- Ma, S.; Wu, X.; Fan, L.; Xie, Z. Predicting water flux and reverse solute flux in forward osmosis processes using artificial neural networks (ANN) modelling with structural parameters. Sep. Purif. Technol. 2024, 351, 128092. [Google Scholar] [CrossRef]
- Afarinandeh, A.; Rashidi, H.; Karimi, L.; Heidari, K.; Arashi, A. Box–Behnken multi-response modeling and optimizing of brackish water reverse osmosis brine treatment using electrodialysis reversal with tortuous flow path. Desalin. Water Treat. 2023, 303, 11–23. [Google Scholar] [CrossRef]
- Teng, Y.; Ng, H.Y. Prediction of reverse osmosis membrane fouling in water reuse by integrated adsorption and data-driven models. Desalination 2024, 576, 117353. [Google Scholar] [CrossRef]
- Wimalawansa, S.J. Purification of contaminated water with reverse osmosis: Effective solution of providing clean water for human needs in developing countries. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 75–89. [Google Scholar]
- Warsinger, D.M.; Tow, E.W.; Nayar, K.G.; Maswadeh, L.A.; Lienhard, V.J.H. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination. Water Res. 2016, 106, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Paulina Maure, O.; Mungkasi, S. Application of numerical integration in solving a reverse osmosis model. AIP Conf. Proc. 2019, 2202, 020043. [Google Scholar]
- Bartman, A.R.; McFall, C.W.; Christofides, P.D.; Cohen, Y. Model-predictive control of feed flow reversal in a reverse osmosis desalination process. J. Process. Control. 2009, 19, 433–442. [Google Scholar] [CrossRef]
- Luo, J.; Li, M.; Hoek, E.M.V.; Heng, Y. Supercomputing and machine learning-aided optimal design of high permeability seawater reverse osmosis membrane systems. Sci. Bull. 2023, 68, 397–407. [Google Scholar] [CrossRef]
- Razeghi, M.; Hajinezhad, A.; Naseri, A.; Noorollahi, Y.; Moosavian, S.F. Multi-criteria decision for selecting a wind farm location to supply energy to reverse osmosis devices and produce freshwater using GIS in Iran. Energy Strategy Rev. 2023, 45, 101018. [Google Scholar] [CrossRef]
- Sayyad, S.U.; Kamthe, N.K.; Sarvade, S.M. Design and simulation of reverse osmosis process in a hybrid forward osmosis-reverse osmosis system. Chem. Eng. Res. Des. 2022, 183, 210–220. [Google Scholar] [CrossRef]
- Kahrizi, M.; Lin, J.; Ji, G.; Kong, L.; Song, C.; Dumée, L.F.; Sahebi, S.; Zhao, S. Relating forward water and reverse salt fluxes to membrane porosity and tortuosity in forward osmosis: CFD modelling. Sep. Purif. Technol. 2020, 241, 116727. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Song, Z.; Liu, D.; Zhang, J.; Guo, L.; Fang, W.; Jin, J. Thermal treated amidoxime modified polymer of intrinsic microporosity (AOPIM-1) membranes for high permselectivity reverse osmosis desalination. Desalination 2023, 551, 116413. [Google Scholar] [CrossRef]
- Singh, C.P.; Patel, R.V.; Yadav, A.; Kumar, A. Numerical simulations of the effect on twisted spacer filaments on biofouling and scaling in the feed channel of reverse osmosis membrane modules. Colloids Surfaces Physicochem. Eng. Asp. 2023, 666, 131333. [Google Scholar] [CrossRef]
- Fulford, G.R.; Broadbridge, P. Industrial Mathematics: Case Studies in the Diffusion of Heat and Matter; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Alt, R.; Lamotte, J.-L.; Markov, S. Stochastic arithmetic Theory and experiments. Serdica J. Comput. 2010, 4, 1–10. [Google Scholar] [CrossRef]
- Scott, N.S.; Jézéquel, F.; Denis, C.; Chesneaux, J.-M. Numerical ‘health check’ for scientific codes: The CADNA approach. Comput. Phys. Comm. 2007, 176, 507–521. [Google Scholar] [CrossRef]
- Graillat, S.; Jézéquel, F.; Wang, S.; Zhu, Y. Stochastic arithmetic in multi precision. Math. Comput. Sci. 2011, 5, 359–375. [Google Scholar] [CrossRef]
- Graillat, S.; Jézxexquel, F.; Picot, R. Numerical Validation of Compensated Summation Algorithms with Stochastic Arithmetic. Electron. Notes Theor. Comput. Sci. 2015, 317, 55–69. [Google Scholar] [CrossRef]
- Vignes, J. Discrete Stochastic Arithmetic for Validating Results of Numerical Software. Numer. Algorithms 2004, 37, 377–390. [Google Scholar] [CrossRef]
- Vignes, J. A stochastic arithmetic for reliable scientific computation. Math. Comput. Simul. 1993, 35, 233–261. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Araghi, M.A.F. Numerical solution of improper integrals with valid implementation. Math. Comput. Appl. 2002, 7, 83–91. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Araghi, M.A.F. The valid implementation of numerical integration methods. Far East J. Appl. Math. 2002, 8, 89–101. [Google Scholar]
- Abbasbandy, S.; Araghi, M.A.F. A stochastic scheme for solving definite integrals. Appl. Numer. Math. 2005, 55, 125–136. [Google Scholar] [CrossRef]
- Araghi, M.A.F.; Noeiaghdam, S. Dynamical control of computations using the Gauss-Laguerre integration rule by applying the CADNA library. Adv. Appl. Math. Sci. 2016, 16, 1–18. [Google Scholar]
- Abbasbandy, S.; Araghi, M.A.F. The use of the stochastic rithmetic to estimate the value of interpolation polynomial with optimal degree. Appl. Numer. Math. 2004, 50, 279–290. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Araghi, M.A.F. Valid implementation of the Sinc-collocation method to solve the linear integral equations by CADNA library. J. Math. Model. 2019, 7, 63–84. [Google Scholar]
- Noeiaghdam, S.; Araghi, M.A.F.; Abbasbandy, S. Finding optimal convergence control parameter in the homotopy analysis method to solve integral equations based on the stochastic arithmetic. Numer. Algorithms 2019, 81, 237–267. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Araghi, M.A.F. A novel approach to find optimal parameter in the homotopy-regularization method for solving integral equations. Appl. Math. Inf. Sci. 2020, 14, 105–113. [Google Scholar]
- Noeiaghdam, S.; Sidorov, D.; Muftahov, I.; Zhukov, A.V. Control of Accuracy on Taylor-Collocation Method for Load Leveling Problem. Bull. Irkutsk. State Univ. Ser. Math. 2019, 30, 59–72. [Google Scholar] [CrossRef]
- Iyengar, S.R.K.; Jain, R.K. Numerical Methods; New Age International Publisher: New Delhi, India, 2020. [Google Scholar]
- Atkinson, K.E. An Introduction to Numerical Analysis, 2nd ed.; John Wiley: Hoboken, NJ, USA, 1991. [Google Scholar]
1 | 0.304949145163061 | 0.304949145163061 | 0.420877731959160 |
2 | 0.594149303635848 | 0.563654389119542 | 0.14277665716038 |
3 | −0.200760426946730 | 0.794909730582579 | 0.652133073422197 |
4 | 0.761872617669618 | 0.962633044616349 | 0.310499971194151 |
5 | 0.465708721516427 | 0.5166096557688 | 0.14336075040960 |
6 | 0.444491866350899 | 0.19175506470476 | 0.6880780124567 |
7 | 0.45383696884876 | 0.3941087914349 | 0.2011050409409 |
8 | 0.45126413292979 | 0.350959223824 | 0.10851354567 |
9 | 0.451374180171874 | 0.11005252904 | 0.153369640 |
10 | 0.451372647634939 | 0.155793983 | 0.115947 |
11 | 0.45137264624239 | 0.13844 | 0.23306 |
12 | 0.45137264647676 | 0.25229 | 0.129 |
13 | 0.45137264647560 | 0.9 | 0.13 |
14 | 0.45137264647578 | 0.28 | 0.31 |
15 | 0.45137264647560 | 0.1 | 0.1 |
16 | 0.4513726464755 | @.0 | @.0 |
1 | 0.84180 | 0.84180 | 0.451372646475465 |
2 | 0.71243 | 0.71243 | 0.4513726393511 |
3 | 0.10741 | 0.10734 | 0.4513619048 |
⋮ | ⋮ | ⋮ | ⋮ |
543 | 0.451372646475176 | 0.9 | 0.290 |
544 | 0.45137264647518 | 0.8 | 0.28 |
545 | 0.451372646475192 | @.0 | 0.27 |
N | |||
---|---|---|---|
1 | −0.74872505235097 | 0.74872505235097 | 0.52624515171056 |
2 | −0.604727538493393 | 0.68825229850163 | 0.457419921860400 |
⋮ | ⋮ | ⋮ | ⋮ |
44 | 0.451372644708314 | 0.131409 | 0.176715 |
45 | 0.451372645943506 | 0.123519 | 0.531960 |
⋮ | ⋮ | ⋮ | ⋮ |
77 | 0.451372646475445 | 0.1 | 0.20 |
78 | 0.451372646475444 | @.0 | 0.2 |
Method | Small Values | Large Values | |||||
---|---|---|---|---|---|---|---|
Romberg Integration | 6 | 6 | 5 | 3 | 1 | 1 | |
DE Sinc Integration | 17 | 17 | 12 | 8 | 2 | 1 | |
SE Sinc Integration | 120 | 120 | 59 | 18 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noeiaghdam, S.; Micula, S. A Novel Approach for Improving Reverse Osmosis Model Accuracy: Numerical Optimization for Water Purification Systems. Mathematics 2025, 13, 459. https://doi.org/10.3390/math13030459
Noeiaghdam S, Micula S. A Novel Approach for Improving Reverse Osmosis Model Accuracy: Numerical Optimization for Water Purification Systems. Mathematics. 2025; 13(3):459. https://doi.org/10.3390/math13030459
Chicago/Turabian StyleNoeiaghdam, Samad, and Sanda Micula. 2025. "A Novel Approach for Improving Reverse Osmosis Model Accuracy: Numerical Optimization for Water Purification Systems" Mathematics 13, no. 3: 459. https://doi.org/10.3390/math13030459
APA StyleNoeiaghdam, S., & Micula, S. (2025). A Novel Approach for Improving Reverse Osmosis Model Accuracy: Numerical Optimization for Water Purification Systems. Mathematics, 13(3), 459. https://doi.org/10.3390/math13030459