Billingsley-Type Theorem of Weighted Bowen Topological Entropy for Amenable Group Actions
Abstract
1. Introduction
1.1. Entropy
1.2. Background
1.3. Preliminaries
2. Weighted Local Entropy and Weighted Bowen Topological Entropy
3. Another Definition of Weighted Bowen Topological Entropy
4. Main Results
- If , ;
- If for any and , then ;
- If for any and , then .
- If for any and , then ;
- If for any and , then .
- If for any and , then ;
- If for any and , then .
- If for all , then ;
- If for all ,and , then .
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adler, R.; Konheim, A.; McAndrew, M. Topological entropy. Trans. Am. Math. Soc. 1965, 114, 309–319. [Google Scholar] [CrossRef]
- Bowen, R. Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 1971, 153, 401–414. [Google Scholar] [CrossRef]
- Dinaburg, E. A correlation between topological entropy and metric entopy. Dokl. Akad. Nauk. SSSR 1970, 190, 19–22. [Google Scholar]
- Kolmogorov, A. A new metric invariant of transient dynamical systems and automorphisms of Lebesgue spaces. Dokl. Akad. Nauk SSSR 1958, 119, 861–864. [Google Scholar]
- Goodman, T.N.T. Relating topological entropy and measure entropy. Bull. Lond. Math. Soc. 1971, 3, 176–180. [Google Scholar] [CrossRef]
- Goodwyn, L.W. Topological entropy bounds measure-theoretic entropy. Proc. Am. Math. Soc. 1969, 23, 679–688. [Google Scholar] [CrossRef]
- Pesin, Y.; Pitskel, B.S. Topological pressure and the variational principle for noncompact sets. Funct. Anal. Appl. 1984, 18, 50–63. [Google Scholar] [CrossRef]
- Brin, M.; Katok, A. On Local Entropy, Lecture Notes in Math; Springer: Berlin, Germany, 1983; Volume 1007, pp. 30–38. [Google Scholar]
- Billingsley, P. Ergodic Theory and Information; John Wiley and Sons Inc.: New York, NY, USA, 1965. [Google Scholar]
- Ma, J.; Wen, Z. A Billingsley type theorem for Bowen entropy. Comptes Rendus Math. 2008, 346, 503–507. [Google Scholar] [CrossRef]
- Huang, X.; Lian, Y.; Zhu, C. A Billingsley-type theorem for the pressure of an action of an amenable group. Discrete Contin. Dyn. Syst. 2019, 39, 959–993. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, Y. Billingsley type theorem for weighted Bowen entropy. Results Math. 2022, 77, 90. [Google Scholar] [CrossRef]
- Zhong, X.F.; Chen, Z.J. Variational principles for topological pressures on subsets. Nonlinearity 2023, 36, 1168. [Google Scholar] [CrossRef]
- Zhang, B.; Meng, D.; Peng, D.; Zhang, J. Billingsley type theorem of Bowen polynomial entropy for fixed-point free flows. Asian-Eur. J. Math. 2024, 17, 2450077. [Google Scholar] [CrossRef]
- Liu, L.; Peng, D. On the variational principle for BS Dimension in amenable group actions. Qual. Theor. Dyn. Syst. 2025, 24, 152. [Google Scholar] [CrossRef]
- Xiao, Z.; Jia, H.; Yin, Z. Scaled packing pressures on subsets for amenable group actions. Acta Math. Sci. 2025, 45, 1891–1919. [Google Scholar] [CrossRef]
- Chen, Z.; Miao, J. Entropies and pressures for nonautonomous dynamical systems. arXiv 2025, arXiv:2502.21149. [Google Scholar]
- Bowen, R. Topological entropy for noncompact sets. Trans. Am. Math. Soc. 1973, 184, 125–136. [Google Scholar] [CrossRef]
- Feng, D.; Huang, W. Variational principle for weighted topological pressure. J. Math. Pures Appl. 2016, 106, 411–452. [Google Scholar] [CrossRef]
- Wang, T.; Huang, Y. Weighted topological and measure-theoretic entropy. Discrete Contin. Dyn. Syst. 2019, 39, 3941–3967. [Google Scholar] [CrossRef]
- Shen, J.; Xu, L.; Zhou, X. Weighted entropy of a flow on non-compact sets. J. Dyn. Diff. Equat. 2020, 32, 181–203. [Google Scholar] [CrossRef]
- Yang, K.; Chen, E.; Lin, Z.; Zhou, X. Weighted topological entropy of random dynamical systems. arXiv 2022, arXiv:2207.09719. [Google Scholar] [CrossRef]
- Sarkooh, J.N. Variational principle for neutralized Bowen topological entropy on subsets of free semigroup actions. Proc. Math. Sci. 2023, 133, 35. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, E.; Yang, J. Weighted entropy formulae on feldman-katok metric. J. Dyn. Control Syst. 2024, 30, 21. [Google Scholar] [CrossRef]
- Zhu, C. The Local Variational principle of weighted entropy and its applications. J. Dyn. Diff. Equat. 2024, 36, 797–831. [Google Scholar] [CrossRef]
- Zhang, F.; He, J.; Shang, P.; Yin, Y. Effective methods for quantifying complexity based on improved ordinal partition networks: Topological dispersion entropy and weighted topological dispersion entropy. Commun. Nonlinear Sci. 2025, 140, 108435. [Google Scholar] [CrossRef]
- Nie, X.; Huang, Y. Weighted sequence entropy and maximal pattern entropy. J. Stat. Phys. 2025, 192, 62. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, L. A Billingsley type theorem for Bowen topological entropy of nonautonomous dynamical systems. Open Math. 2022, 20, 1715–1722. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, C. Polynomial entropy of subsets for free semigroup actions. J. Dyn. Control. Syst. 2023, 29, 229–243. [Google Scholar] [CrossRef]
- Chen, H.; Li, Z. Scaled packing entropy for amenable group actions. Banach J. Math. Anal. 2023, 17, 50. [Google Scholar] [CrossRef]
- Kerr, D.; Li, H. Ergodic Theory: Independence and Dichotomies; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Huang, X.; Liu, J.; Zhu, C. Bowen topological entropy of subsets for amenable group actions. J. Math. Anal. Appl. 2019, 472, 1678–1715. [Google Scholar] [CrossRef]
- Dou, D.; Zheng, D.; Zhou, X. Packing topological entropy for amenable group actions. Ergod. Theory Dyn. Syst. 2023, 43, 480–514. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, Y.; Liu, H. Billingsley-Type Theorem of Weighted Bowen Topological Entropy for Amenable Group Actions. Mathematics 2025, 13, 3776. https://doi.org/10.3390/math13233776
Lian Y, Liu H. Billingsley-Type Theorem of Weighted Bowen Topological Entropy for Amenable Group Actions. Mathematics. 2025; 13(23):3776. https://doi.org/10.3390/math13233776
Chicago/Turabian StyleLian, Yuan, and Hongjun Liu. 2025. "Billingsley-Type Theorem of Weighted Bowen Topological Entropy for Amenable Group Actions" Mathematics 13, no. 23: 3776. https://doi.org/10.3390/math13233776
APA StyleLian, Y., & Liu, H. (2025). Billingsley-Type Theorem of Weighted Bowen Topological Entropy for Amenable Group Actions. Mathematics, 13(23), 3776. https://doi.org/10.3390/math13233776

