The Region of Attraction for Output Tracking in Probabilistic Boolean Control Networks
Abstract
1. Introduction
- We formally define the concept of the TROA for PBCNs, which characterizes the set of initial states from which asymptotic output tracking of a constant reference signal can be achieved with probability one via state feedback control.
- A computationally verifiable sufficient condition for identifying whether a given set is a TROA is derived based on invariant set theory. Correspondingly, a constructive method for designing the required state feedback controller is provided.
- We establish the existence of the maximum TROA, and develop an effective recursive algorithm for its computation, offering a systematic solution to determine the largest set of initial states for which asymptotic tracking is feasible.
2. Preliminaries
2.1. Notations
2.2. Model Introduction
3. Main Results
3.1. Problem Formulation
- Problem 1: For a given set , how can we verify whether it is a TROA? If so, how to design the corresponding feedback controller?
- Problem 2: How to effectively compute the maximum TROA of PBCN (1) w.r.t. the reference signal ?
3.2. Invariant Sets and Control Invariant Sets
- (1)
- there exists some such that ;
- (2)
- for all .
3.3. The TROA Identification Condition and Feedback Control Design Method
- (1)
- there exists some such that the l-step transition probability from to is positive, i.e., ;
- (2)
- for all finite positive integers l, the transition probability from to is zero, i.e., .
- (1)
- For all , it holds that .
- (2)
- There exists some such that .
3.4. Computation of the Maximum TROA
4. Illustrative Examples
4.1. Example 1
4.2. Example 2
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kauffman, S.A. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 1969, 22, 437–467. [Google Scholar] [CrossRef]
- Li, B.; Lu, J.; Zhong, J.; Wang, Y. On the effect of dynamic event observations in distributed fault prognosis of discrete-event systems. IEEE Trans. Autom. Control 2025, 70, 2889–2901. [Google Scholar] [CrossRef]
- Li, B.; Wu, Y.; Lu, J.; Pan, Q.; Xu, W. Online information compression of finite-valued networks via finite automata approach and reinforcement learning. IEEE Trans. Inf. Theory 2025, 71, 8206–8216. [Google Scholar] [CrossRef]
- Shmulevich, I.; Dougherty, E.R.; Kim, S.; Zhang, W. Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks. Bioinformatics 2002, 18, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Shmulevich, I.; Dougherty, E.R.; Zhang, W. From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proc. IEEE 2002, 90, 1778–1792. [Google Scholar] [CrossRef]
- Datta, A.; Choudhary, A.; Bittner, M.L.; Dougherty, E.R. External control in Markovian genetic regulatory networks: The imperfect information case. Bioinformatics 2004, 20, 924–930. [Google Scholar] [CrossRef]
- Cheng, D.; Qi, H.; Li, Z. Analysis and Control of Boolean Networks: A Semi-Tensor Product Approach; Springer: London, UK, 2011. [Google Scholar]
- Wang, J.; Liu, W.; Fu, S.; Xia, J. On robust set stability and set stabilization of probabilistic Boolean control networks. Appl. Math. Comput. 2022, 422, 126992. [Google Scholar] [CrossRef]
- Wang, J.; De Leone, R.; Fu, S.; Xia, J.; Qiao, L. Stabilisation and set stabilisation of periodic switched Boolean control networks. Int. J. Control 2023, 96, 699–710. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, J.; Pan, Q.; Li, N. Minimal pinning control for set stability of Boolean networks. Appl. Math. Comput. 2024, 465, 128433. [Google Scholar] [CrossRef]
- Zhong, J.; Pan, Q.; Xu, W.; Chen, B. A framework of pinning control for non-periodical stable behaviors of large-scale asynchronous Boolean networks. IEEE Trans. Autom. Control 2024, 69, 5711–5726. [Google Scholar] [CrossRef]
- Feng, A.; Zhong, J.; Yerudkar, A.; Chen, H.; Wu, J. Event-triggered output feedback stabilization of Boolean control networks via Ledley solution. Commun. Nonlinear Sci. Numer. Simul. 2025, 145, 108710. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, A.; Wu, J.; Zhong, J.; Li, B. Robust set stabilization of Boolean control networks with edge removal perturbations. Commun. Nonlinear Sci. Numer. Simul. 2025, 140, 108355. [Google Scholar] [CrossRef]
- Chen, B.; Xue, Y.; Li, B.; Zhong, J. Local asymptotic set stabilization of probabilistic Boolean control networks via state feedback control. J. Frankl. Inst. 2025, 362, 107723. [Google Scholar] [CrossRef]
- Chen, B.; Li, B.; Wu, T.; Zheng, Y. Local stabilization of Boolean control networks via stochastic sampled-data control. Appl. Math. Comput. 2026, 511, 129746. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Z.G.; Huang, T.; Chakrabarti, P.; Che, W.W. Finite-time observability of Boolean networks with Markov jump parameters under mode-dependent pinning control. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 245–254. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Z.G.; Shen, Y.; Che, W.W. Pinning asymptotic observability of distributed Boolean networks. IEEE Trans. Cybern. 2024, 54, 5360–5368. [Google Scholar] [CrossRef]
- Sun, Y.; Fu, S.; Xia, L.; Xu, J. Minimal observability of switching Boolean networks. Math. Methods Appl. Sci. 2025, 48, 3291–3303. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Z.; Liang, J.; Li, M. State estimation for stochastic time-varying Boolean networks. IEEE Trans. Autom. Control 2020, 65, 5480–5487. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Z.; Shen, B.; Liang, J. Model evaluation of the stochastic Boolean control networks. IEEE Trans. Autom. Control 2022, 67, 4146–4153. [Google Scholar] [CrossRef]
- Li, B.; Pan, Q.; Zhong, J.; Xu, W. Long-run behavior estimation of temporal Boolean networks with multiple data losses. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 15004–15011. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Z.G. Shifting attack stabilization and estimation of hidden Markov Boolean networks. IEEE Trans. Cybern. 2025, 55, 1930–1940. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Z.G.; Shen, Y. Estimation of state and mode for Boolean networks with Markov jump parameters. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 4188–4197. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Xie, L. Output tracking control of Boolean control networks via state feedback: Constant reference signal case. Automatica 2015, 59, 54–59. [Google Scholar] [CrossRef]
- Li, H.; Xie, L.; Wang, Y. Output regulation of Boolean control networks. IEEE Trans. Autom. Control 2017, 62, 2993–2998. [Google Scholar] [CrossRef]
- Chen, B.; Xue, Y.; Shi, A. Optimal feedback policy for the tracking control of Markovian jump Boolean control networks over a finite horizon. Mathematics 2025, 13, 1332. [Google Scholar] [CrossRef]
- Fu, S.; Feng, J.E.; Zhao, Y.; Wang, J.; Pan, J. Dimensionality reduction method for the output regulation of Boolean control networks. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 5334–5347. [Google Scholar] [CrossRef]
- Tong, L.; Liang, J.; Hu, H.X. Fault detectability of asynchronous switched Boolean networks: A set reachability approach. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 3876–3888. [Google Scholar] [CrossRef]
- Tong, L.; Liang, J. Fault detectability of asynchronous delayed Boolean control networks with sampled-data control. IEEE Trans. Netw. Sci. Eng. 2024, 11, 724–735. [Google Scholar] [CrossRef]
- Li, B.; Lu, J.; Xu, W.; Zhong, J. Lossless state compression of Boolean control networks. IEEE Trans. Autom. Control 2024, 69, 4166–4173. [Google Scholar] [CrossRef]
- Gao, Z.; Feng, J.E. Research status of nonlinear feedback shift register based on semi-tensor product. Mathematics 2022, 10, 3538. [Google Scholar] [CrossRef]
- Fu, S.; Li, L.; Feng, J.E. Strategy optimization of controlled evolutionary games on a two-layer coupled network using Lebesgue sampling. Nonlinear Anal. Hybrid Syst. 2025, 56, 101570. [Google Scholar] [CrossRef]
- Wang, S.; Li, H. Resolution of fuzzy relational inequalities with Boolean semi-tensor product composition. Mathematics 2021, 9, 937. [Google Scholar] [CrossRef]
- Melhem, K.; Wang, W. Global output tracking control of flexible joint robots via factorization of the manipulator mass matrix. IEEE Trans. Robot. 2009, 25, 428–437. [Google Scholar] [CrossRef]
- Al-Hiddabi, S.A.; McClamroch, N.H. Tracking and maneuver regulation control for nonlinear nonminimum phase systems: Application to flight control. IEEE Trans. Control Syst. Technol. 2002, 10, 780–792. [Google Scholar] [CrossRef]
- Li, W.; Yan, S.; Shi, L.; Yue, J.; Shi, M.; Lin, B.; Qin, K. Multiagent consensus tracking control over asynchronous cooperation–competition networks. IEEE Trans. Cybern. 2025, 55, 4347–4360. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Yan, S.; Li, W. Consensus and products of substochastic matrices: Convergence rate with communication delays. IEEE Trans. Syst. Man Cybern. Syst. 2025, 55, 4752–4761. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Guo, P. State feedback based output tracking control of probabilistic Boolean networks. Inf. Sci. 2016, 349–350, 1–11. [Google Scholar] [CrossRef]
- Chen, B.; Cao, J.; Luo, Y.; Rutkowski, L. Asymptotic output tracking of probabilistic Boolean control networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 2780–2790. [Google Scholar] [CrossRef]
- Yang, X.; Li, H. Robust output tracking of Boolean control networks subject to stochastic function perturbations. IEEE Trans. Comput. Biol. Bioinform. 2025, 22, 382–389. [Google Scholar] [CrossRef]
- Zhong, J.; Pan, Q.; Xu, D.; Li, B.; Li, N. Output regulation of Boolean control networks under probabilistic outputs. IEEE Trans. Control Netw. Syst. 2025, 12, 28–37. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Xiao, G. Optimal control for reachability of Markov jump switching Boolean control networks subject to output trackability. Int. J. Control 2025, 98, 200–207. [Google Scholar] [CrossRef]
- Zhou, R.; Guo, Y.; Wu, Y.; Gui, W. Asymptotical feedback set stabilization of probabilistic Boolean control networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 4524–4537. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Shen, Y.; Gui, W. Asymptotical stability of logic dynamical systems with random impulsive disturbances. IEEE Trans. Autom. Control 2021, 66, 513–525. [Google Scholar] [CrossRef]
- Kobayashi, K.; Hiraishi, K. An integer programming approach to optimal control problems in context-sensitive probabilistic Boolean networks. Automatica 2011, 47, 1260–1264. [Google Scholar] [CrossRef]
- Acernese, A.; Yerudkar, A.; Glielmo, L.; Del Vecchio, C. Reinforcement learning approach to feedback stabilization problem of probabilistic Boolean control networks. IEEE Control Syst. Lett. 2021, 5, 337–342. [Google Scholar] [CrossRef]




| Notations | Definitions |
|---|---|
| Set of natural numbers | |
| n-dimensional identity matrix | |
| i-th column of | |
| Set of columns of , i.e., | |
| -th entry of the matrix A | |
| i-th column of the matrix A | |
| Set of integers | |
| Logical matrix of which k-column is | |
| Set of logical matrices | |
| ⋉ | Semi-tensor product (STP) [7] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Xue, Y.; Li, M.; Mao, J.-J.; Shi, A. The Region of Attraction for Output Tracking in Probabilistic Boolean Control Networks. Mathematics 2025, 13, 3682. https://doi.org/10.3390/math13223682
Chen B, Xue Y, Li M, Mao J-J, Shi A. The Region of Attraction for Output Tracking in Probabilistic Boolean Control Networks. Mathematics. 2025; 13(22):3682. https://doi.org/10.3390/math13223682
Chicago/Turabian StyleChen, Bingquan, Yuyi Xue, Meiyu Li, Jin-Jin Mao, and Aiju Shi. 2025. "The Region of Attraction for Output Tracking in Probabilistic Boolean Control Networks" Mathematics 13, no. 22: 3682. https://doi.org/10.3390/math13223682
APA StyleChen, B., Xue, Y., Li, M., Mao, J.-J., & Shi, A. (2025). The Region of Attraction for Output Tracking in Probabilistic Boolean Control Networks. Mathematics, 13(22), 3682. https://doi.org/10.3390/math13223682

