Fault-Tolerant Metric Dimension and Applications: Zero-Divisor Graph of Upper Triangular Matrices
Abstract
1. Introduction
- Each system component or module is represented by an element (matrix) of the ring,
- The zero-divisor graph captures incompatibilities or interference between modules (i.e., when the product of two elements is zero),
- Vertices in the graph represent vulnerable or fault-prone states,
- Edges represent interactions or fault-inducing dependencies.
2. Preliminaries
3. Zero-Divisor Graphs of the Upper Triangular Matrix
3.1. Fault-Tolerant Metric Dimension of Zero-Divisor Graph Obtained from Upper Triangular Matrix of
3.2. Fault-Tolerant Edge Metric Dimension of Zero-Divisor Graph Obtained from Upper Triangular Matrix of
4. Applications in Robotics of Fault-Tolerant and Fault-Tolerant Edge Metric Dimension of Zero-Divisors Graph Obtained for Upper Triangular Matrix in Robotics and Autonomous Navigation
4.1. Localization
4.2. Path Planning
4.3. Practical Implementation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Slater, P.J. Leaves of trees. Congr. Numer. 1975, 14, 549–559. [Google Scholar]
- Harary, F.; Melter, R.A. On the metric dimension of a graph. Ars Comb. 1976, 2, 191–195. [Google Scholar]
- Sharma, S.K.; Bhat, V.K. On some plane graphs and their metric dimension. Int. J. Appl. Comput. Math. 2021, 7, 203. [Google Scholar] [CrossRef]
- Imran, M. On the metric dimension of barycentric subdivision of Cayley graphs. Acta Math. Appl. Sin. 2016, 32, 1067–1072. [Google Scholar] [CrossRef]
- Chaudhry, S.A.; Javaid, M.A.I.; Salman, M. On the metric dimension of generalized Petersen graphs. Quaest. Math. 2013, 36, 421–435. [Google Scholar] [CrossRef]
- Naz, S.; Salman, M.; Ali, U.; Javaid, I.; Bokhary, S.A.U.H. On the constant metric dimension of generalized Petersen graphs P(n,4). Acta Math. Sin. (Engl. Ser.) 2014, 30, 1145–1160. [Google Scholar] [CrossRef]
- Raza, H.; Liu, J.B.; Qu, S. On mixed metric dimension of rotationally symmetric graphs. IEEE Access 2019, 8, 11560–11569. [Google Scholar] [CrossRef]
- Sharma, S.K.; Bhat, V.K. On metric dimension of plane graphs with m/2 number of 10 sided faces. J. Comb. Optim. 2022, 44, 1433–1458. [Google Scholar] [CrossRef]
- Bondy, J.A.; Murty, U.S.R. Graph Theory with Applications; Macmillan: London, UK, 1976; Volume 290. [Google Scholar]
- Hayat, S.; Khan, A.; Malik, M.Y.H.; Imran, M.; Siddiqui, M.K. Fault-Tolerant Metric Dimension of Interconnection Networks. IEEE Access 2020, 8, 145435–145445. [Google Scholar] [CrossRef]
- Kang, C.X.; Peterin, I.; Yi, E. On the simultaneous metric dimension of a graph and its complement. Rocky Mt. J. Math. 2025, 55, 187–201. [Google Scholar] [CrossRef]
- Ali, S.; Azeem, M.; Zahid, M.A.; Usman, M.; Pal, M. Novel resolvability parameter of some well-known graphs and exchange properties with applications. J. Appl. Math. Comput. 2024, 70, 4373–4394. [Google Scholar] [CrossRef]
- Raza, H.; Hayat, S.; Pan, X.F. On the fault-tolerant metric dimension of convex polytopes. Appl. Math. Comput. 2018, 339, 172–185. [Google Scholar] [CrossRef]
- Siddiqui, H.M.A.; Hayat, S.; Khan, A.; Imran, M.; Razzaq, A.; Liu, J.B. Resolvability and fault-tolerant resolvability structures of convex polytopes. Theor. Comput. Sci. 2019, 796, 114–128. [Google Scholar] [CrossRef]
- Akhila, M.S.; Manilal, K. Fault-Tolerant Metric Dimension of Annihilator Graphs of Commutative Rings. J. Algebr. Syst. 2025, 13, 135–150. [Google Scholar]
- Saha, L.; Lama, R.; Tiwary, K.; Das, K.C.; Shang, Y. Fault-tolerant metric dimension of circulant graphs. Mathematics 2022, 10, 124. [Google Scholar] [CrossRef]
- Liu, X.; Ahsan, M.; Zahid, Z.; Ren, S. Fault-tolerant edge metric dimension of certain families of graphs. AIMS Math. 2021, 6, 1140–1152. [Google Scholar] [CrossRef]
- Yi, E. On strong metric dimension of graphs and their complements. Acta Math. Sin. (Engl. Ser.) 2013, 29, 1479–1492. [Google Scholar] [CrossRef]
- Xing, B.H.; Sharma, S.K.; Bhat, V.K.; Raza, H.; Liu, J.B. The Vertex-Edge Resolvability of Some Wheel-Related Graphs. J. Math. 2021, 2021, 1859714. [Google Scholar] [CrossRef]
- Singh, P.; Sharma, S.; Sharma, S.k.; Bhat, V.K. Metric dimension and edge metric dimension of windmill graphs. AIMS Math. 2021, 6, 9138–9153. [Google Scholar] [CrossRef]
- Pirzada, S.; Raja, R. On the metric dimension of a zero-divisor graph. Commun. Algebra 2017, 45, 1399–1408. [Google Scholar] [CrossRef]
- Mohamed, B.; Batiha, I.M.; Odeh, M.; El-Meligy, M. Computing the independent domination metric dimension problem of specific graphs. J. Mech. Contin. Math. Sci. 2024, 19, 256–264. [Google Scholar] [CrossRef]
- Chartrand, G.; Saenpholphat, V.; Zhang, P. The independent resolving number of a graph. Math. Bohem. 2003, 128, 379–393. [Google Scholar] [CrossRef]
- Chartrand, G.; Eroh, L.; Johnson, M.A.; Oellermann, O.R. Resolvability in graphs and the metric dimension of a graph. Discret. Appl. Math. 2000, 105, 99–113. [Google Scholar] [CrossRef]
- Hernando, C.; Mora, M.; Slater, P.J.; Wood, D.R. Fault-tolerant metric dimension of graphs. In Proceedings of the International Conference on Convexity in Discrete Structures, Berlin, Germany, 15–18 July 2008; Volume 5, pp. 81–85. [Google Scholar]
- Beck, I. Coloring of commutative rings. J. Algebra 1988, 116, 208–226. [Google Scholar] [CrossRef]
- Anderson, D.F.; Livingston, P.S. The zero-divisor graph of a commutative ring. J. Algebra 1999, 217, 434–447. [Google Scholar] [CrossRef]
- Redmond, S.P. The zero-divisor graph of a non-commutative ring. Int. J. Commut. Ring 2002, 1, 203–211. [Google Scholar]
- DeMeyer, F.R.; McKenzie, T.; Schneider, K. The zero-divisor graph of a commutative semigroup. J. Algebra 2002, 247, 215–220. [Google Scholar] [CrossRef]
- Behboodi, A. Zero-divisor graphs for modules over commutative rings. J. Algebra Appl. 2016, 15, 1650085. [Google Scholar] [CrossRef]


| 3 | 3 | 3 | 1 | 1 | 1 | 3 | 3 | 3 | 2 | 1 | 3 | 3 | 3 | 2 | |
| 1 | 2 | 2 | 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 1 | 2 | 2 | 3 | |
| 1 | 1 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 2 | 3 | 1 | 1 | 3 | 2 | |
| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | |
| 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 3 | 3 | |
| 2 | 3 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 2 | 2 | 2 | 3 | 1 | 2 | |
| 3 | 4 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 3 | 3 | 3 | 4 | 0 | 3 | |
| 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | |
| 0 | 2 | 3 | 4 | 4 | 4 | 2 | 2 | 2 | 3 | 4 | 2 | 2 | 3 | 3 | |
| 2 | 0 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 3 | 4 | 2 | 2 | 4 | 3 | |
| 3 | 4 | 0 | 3 | 3 | 3 | 4 | 4 | 4 | 3 | 4 | 3 | 4 | 2 | 3 | |
| 3 | 3 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 3 | 3 | 3 | 4 | 4 | |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 0 | 3 | 3 | 3 | 3 | 2 | |
| 2 | 2 | 2 | 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 1 | |
| 2 | 3 | 3 | 4 | 4 | 4 | 3 | 3 | 3 | 4 | 4 | 2 | 3 | 3 | 4 | |
| 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 3 | 4 | 2 | 0 | 4 | 3 | |
| 2 | 2 | 4 | 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 4 | 3 | |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 0 | |
| 4 | 4 | 4 | 0 | 2 | 2 | 3 | 3 | 3 | 3 | 2 | 4 | 3 | 4 | 3 | |
| 4 | 4 | 4 | 2 | 0 | 2 | 3 | 3 | 3 | 3 | 2 | 4 | 3 | 4 | 3 | |
| 2 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 4 | 3 | |
| 2 | 2 | 3 | 4 | 4 | 4 | 2 | 2 | 2 | 3 | 4 | 0 | 2 | 3 | 3 | |
| 4 | 4 | 4 | 2 | 2 | 0 | 3 | 3 | 3 | 3 | 2 | 4 | 3 | 4 | 3 | |
| 2 | 2 | 4 | 4 | 4 | 2 | 0 | 2 | 2 | 3 | 4 | 2 | 2 | 4 | 3 | |
| 2 | 2 | 4 | 4 | 4 | 2 | 2 | 0 | 2 | 3 | 4 | 2 | 2 | 4 | 3 | |
| 4 | 4 | 4 | 2 | 2 | 2 | 4 | 4 | 4 | 3 | 2 | 4 | 4 | 4 | 3 | |
| 2 | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 0 | 3 | 4 | 2 | 2 | 4 | 3 |
| 3 | 3 | 1 | 1 | 1 | 3 | 3 | 3 | 2 | 1 | 3 | 3 | 3 | 2 | |
| 2 | 2 | 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 1 | 2 | 2 | 3 | |
| 1 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 2 | 3 | 1 | 1 | 3 | 2 | |
| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | |
| 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 3 | 3 | |
| 3 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 2 | 2 | 2 | 3 | 1 | 2 | |
| 4 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 3 | 3 | 3 | 4 | 0 | 3 | |
| 3 | 3 | 2 | 2 | 2 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | |
| 2 | 3 | 4 | 4 | 4 | 2 | 2 | 2 | 3 | 4 | 2 | 2 | 3 | 3 | |
| 0 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 3 | 4 | 2 | 2 | 4 | 3 | |
| 4 | 0 | 3 | 3 | 3 | 4 | 4 | 4 | 3 | 4 | 3 | 4 | 2 | 3 | |
| 3 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 3 | 3 | 3 | 4 | 4 | |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 0 | 3 | 3 | 3 | 3 | 2 | |
| 2 | 2 | 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 1 | |
| 3 | 3 | 4 | 4 | 4 | 3 | 3 | 3 | 4 | 4 | 2 | 3 | 3 | 4 | |
| 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 3 | 4 | 2 | 0 | 4 | 3 | |
| 2 | 4 | 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 4 | 3 | |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 0 | |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 0 | |
| 4 | 4 | 0 | 2 | 2 | 3 | 3 | 3 | 3 | 2 | 4 | 3 | 4 | 3 | |
| 4 | 4 | 2 | 0 | 2 | 3 | 3 | 3 | 3 | 2 | 4 | 3 | 4 | 3 | |
| 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 4 | 3 | |
| 2 | 3 | 4 | 4 | 4 | 2 | 2 | 2 | 3 | 4 | 0 | 2 | 3 | 3 | |
| 4 | 4 | 2 | 2 | 0 | 3 | 3 | 3 | 3 | 2 | 4 | 3 | 4 | 3 | |
| 2 | 4 | 4 | 4 | 2 | 0 | 2 | 2 | 3 | 4 | 2 | 2 | 4 | 3 | |
| 2 | 4 | 4 | 4 | 2 | 2 | 0 | 2 | 3 | 4 | 2 | 2 | 4 | 3 | |
| 4 | 4 | 2 | 2 | 2 | 4 | 4 | 4 | 3 | 2 | 4 | 4 | 4 | 3 | |
| 2 | 4 | 4 | 4 | 2 | 2 | 2 | 0 | 3 | 4 | 2 | 2 | 4 | 3 |
| 0 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | |
| 1 | 0 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | |
| 1 | 1 | 0 | 1 | 2 | 2 | 2 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | |
| 1 | 1 | 1 | 0 | 2 | 2 | 2 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | |
| 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | |
| 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | |
| 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | |
| 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 2 | 2 | 2 | 2 | 2 | 1 | 1 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | |
| 2 | 2 | 2 | 2 | 1 | 3 | 3 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | |
| 2 | 2 | 2 | 2 | 0 | 3 | 3 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 3 | 3 | 3 | 3 | 1 | 3 | 3 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 2 | 2 | 2 | 2 | 1 | 3 | 3 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
| 2 | 2 | 2 | 2 | 3 | 0 | 1 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | |
| 2 | 2 | 2 | 2 | 3 | 1 | 0 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | |
| 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
| 3 | 3 | 3 | 3 | 2 | 2 | 1 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
| 2 | 2 | 2 | 2 | 2 | 3 | 3 | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
| 2 | 2 | 2 | 2 | 2 | 3 | 3 | 1 | 0 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
| 2 | 2 | 2 | 2 | 2 | 1 | 1 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | |
| 2 | 2 | 2 | 2 | 2 | 3 | 3 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | |
| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
| 2 | 2 | 2 | 2 | 2 | 3 | 3 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 0 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 1 | 0 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 3 | 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
| 3 | 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | |
| 3 | 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | |
| 3 | 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | |
| 3 | 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | |
| 3 | 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | |
| 3 | 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | |
| 3 | 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
| 2 | 2 | 2 | 2 | 2 | 1 | 1 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| fle′ (R) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | |
| 0 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | |
| 1 | 0 | 1 | 2 | 2 | 2 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | |
| 1 | 1 | 0 | 2 | 2 | 2 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | |
| 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | |
| 1 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | |
| 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | |
| 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 2 | 2 | 2 | 2 | 1 | 1 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | |
| 2 | 2 | 2 | 1 | 3 | 3 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | |
| 2 | 2 | 2 | 0 | 3 | 3 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 3 | 3 | 3 | 1 | 3 | 3 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 2 | 2 | 2 | 1 | 3 | 3 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
| 2 | 2 | 2 | 3 | 0 | 1 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | |
| 2 | 2 | 2 | 3 | 1 | 0 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | |
| 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
| 3 | 3 | 3 | 2 | 2 | 1 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
| 2 | 2 | 2 | 2 | 3 | 3 | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
| 2 | 2 | 2 | 2 | 3 | 3 | 1 | 0 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
| 2 | 2 | 2 | 2 | 1 | 1 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | |
| 2 | 2 | 2 | 2 | 3 | 3 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | |
| 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
| 2 | 2 | 2 | 2 | 3 | 3 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
| 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 0 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 1 | 0 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
| 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | |
| 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | |
| 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | |
| 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | |
| 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | |
| 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | |
| 3 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
| 2 | 2 | 2 | 2 | 1 | 1 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanna, L.A.; Alkandari, M.M.; Bhat, V.K. Fault-Tolerant Metric Dimension and Applications: Zero-Divisor Graph of Upper Triangular Matrices. Mathematics 2025, 13, 3678. https://doi.org/10.3390/math13223678
Hanna LA, Alkandari MM, Bhat VK. Fault-Tolerant Metric Dimension and Applications: Zero-Divisor Graph of Upper Triangular Matrices. Mathematics. 2025; 13(22):3678. https://doi.org/10.3390/math13223678
Chicago/Turabian StyleHanna, Latif Abdelmalek, Maryam M. Alkandari, and Vijay Kumar Bhat. 2025. "Fault-Tolerant Metric Dimension and Applications: Zero-Divisor Graph of Upper Triangular Matrices" Mathematics 13, no. 22: 3678. https://doi.org/10.3390/math13223678
APA StyleHanna, L. A., Alkandari, M. M., & Bhat, V. K. (2025). Fault-Tolerant Metric Dimension and Applications: Zero-Divisor Graph of Upper Triangular Matrices. Mathematics, 13(22), 3678. https://doi.org/10.3390/math13223678

