On a Heisenberg-Type Uncertainty Principle in von Neumann Algebras
Abstract
1. Introduction
2. Operator Monotone Functions
- (i)
- f is operator monotone.
- (ii)
- .
- (iii)
- .
3. Auxiliary Lemmas
- (i)
- is a positive symmetric bilinear form;
- (ii)
- is a positive symmetric bilinear form.
4. A Refinement of Heisenberg Uncertainty Relation
- (1)
- ;
- (2)
- ;
- (3)
- ;
- (4)
- ;
- (5)
- .
- (1)
- ;
- (2)
- if , .
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, S. Heisenberg uncertainty relation for mixed states. Phys. Rev. A 2005, 72, 042110. [Google Scholar] [CrossRef]
- Yanagi, K. Uncertainty relation on Wigner-Yanase-Dyson skew information. J. Math. Anal. Appl. 2010, 365, 12–18. [Google Scholar] [CrossRef]
- Yanagi, K. Metric adjusted skew information and uncertainty relation. J. Math. Anal. Appl. 2011, 380, 888–892. [Google Scholar] [CrossRef]
- Gibilisco, P.; Isola, T. On a refinement of Heisenberg uncertainty relation by means of quantum Fisher information. J. Math. Anal. Appl. 2011, 375, 270–275. [Google Scholar] [CrossRef]
- Benatti, F. Dynamics, Information and Complexity in Quantum Systems; Springer: New York, NY, USA, 2009. [Google Scholar]
- Chang, M.S. Theory of Quantum Information with Memory; De Gruyter: Berlin, Germany, 2022. [Google Scholar]
- Hiai, F. Quantum f-Divergences in von Neumann Algebras; Springer: New York, NY, USA, 2021. [Google Scholar]
- Ingarden, R.S.; Kossakovski, A.; Ohya, M. Information Dynamics and Open Systems; Springer: New York, NY, USA, 1997. [Google Scholar]
- Ohya, M.; Petz, D. Quantum Entropy and Its Use; Springer: New York, NY, USA, 1993. [Google Scholar]
- Ohya, M.; Volovich, I. Mathematical Foundations of Quantum Information and Computation and its Applications to Nano- and Bio-Systems; Springer: New York, NY, USA, 2011. [Google Scholar]
- Ciaglia, F.M.; Nocera, F.D.; Jost, J.; Schwachhöfer, L. Parametric models and information geometry on W*-algebras. Inf. Geom. 2024, 7, S329–S354. [Google Scholar] [CrossRef]
- Gibilisco, P.; Isola, T. Connections on statistical manifolds of density operators by geometry of non-commutative Lp-spaces. Infinite Dimensional Analysis. Quantum Probab. Relat. Top. 1999, 2, 169–178. [Google Scholar]
- Gibilisco, P.; Isola, T. Uncertainty principle for Wigner-Yanase-Dyson information in semifinite von Neumann algebras. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2008, 11, 127–133. [Google Scholar] [CrossRef]
- Gibilisco, P.; Isola, T. A dynamical uncertainty principle in von Neumann algebras by operator monotone functions. J. Stat. Phys. 2008, 132, 937–944. [Google Scholar] [CrossRef]
- Gibilisco, P.; Isola, T. How to distinguish quantum covariances using uncertainty relations. J. Math. Anal. Appl. 2011, 384, 670–676. [Google Scholar] [CrossRef]
- Kubo, F.; Ando, T. Means of positive linear operators. Math. Ann. 1979, 246, 205–224. [Google Scholar] [CrossRef]
- Petz, D. Monotone metrics on matrix spaces. Linear Algebra Appl. 1996, 244, 81–96. [Google Scholar] [CrossRef]
- Petz, D. Covariance and Fisher information in quantum mechanics. J. Phys. Math. Gen. 2002, 35, 929. [Google Scholar] [CrossRef]
- Gibilisco, P.; Hansen, F.; Isola, T. On a correspondence between regular and non-regular operator monotone functions. Lin. Alg. Appl. 2009, 430, 2225–2232. [Google Scholar] [CrossRef][Green Version]
- Gibilisco, P.; Imparato, D.; Isola, T. A Robertson-type uncertainty principle and quantum Fisher information. Lin. Alg. Appl. 2008, 428, 1706–1724. [Google Scholar] [CrossRef][Green Version]
- Girolami, D.; Souza, A.M.; Giovannetti, V.; Tufarelli, T.; Filgueiras, J.G.; Sarthour, R.S.; Soares-Pinto, D.O.; Oliveira, I.S.; Adesso, G. Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett. 2014, 112, 210401. [Google Scholar] [CrossRef]
- Girolami, D.; Tufarelli, T.; Adesso, G. Characterizing Nonclassical Correlations via Local Quantum Uncertainty. Phys. Rev. Lett. 2013, 110, 240402. [Google Scholar] [CrossRef]
- Gibilisco, P.; Girolami, D.; Hansen, F. A unified approach to Local Quantum Uncertainty and Interferometric Power by Metric Adjusted Skew Information. Entropy 2021, 23, 263. [Google Scholar] [CrossRef]
- Gibilisco, P. The f ↔ correspondence and its applications in quantum information geometry. Entropy 2024, 26, 286. [Google Scholar] [CrossRef]
- Stratila, S.V.; Zsido, L. Lectures on von Neumann Algebras; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Takesaki, M. Theory of Operator Algebras; I, II, III; Springer: New York, NY, USA, 2003. [Google Scholar]
- Gibilisco, P.; Isola, T. An inequality related to uncertainty principle in von Neumann algebras. Internat. J. Math. 2008, 10, 1215–1222. [Google Scholar] [CrossRef]
- Kato, T. Perturbation Theory for Linear Operators; Springer: New York, NY, USA, 1966. [Google Scholar]
- Schmüdgen, K. Unbounded Self-Adjoint Operators on Hilbert Space; Springer: New York, NY, USA, 2012. [Google Scholar]
- Chisolm, E.D. Generalizing the Heisenberg uncertainty relation. arXiv 2001, arXiv:quant-ph/0011115v3. [Google Scholar] [CrossRef]
- Weidmann, J. Linear Operators in Hilbert Spaces; Springer: New York, NY, USA, 1980. [Google Scholar]
- Ando, T. Concavity of certain maps on positive definite matrices and applications to Hadamard products. Lin. Alg. Appl. 1979, 26, 203–241. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibilisco, P.; Isola, T. On a Heisenberg-Type Uncertainty Principle in von Neumann Algebras. Mathematics 2025, 13, 3651. https://doi.org/10.3390/math13223651
Gibilisco P, Isola T. On a Heisenberg-Type Uncertainty Principle in von Neumann Algebras. Mathematics. 2025; 13(22):3651. https://doi.org/10.3390/math13223651
Chicago/Turabian StyleGibilisco, Paolo, and Tommaso Isola. 2025. "On a Heisenberg-Type Uncertainty Principle in von Neumann Algebras" Mathematics 13, no. 22: 3651. https://doi.org/10.3390/math13223651
APA StyleGibilisco, P., & Isola, T. (2025). On a Heisenberg-Type Uncertainty Principle in von Neumann Algebras. Mathematics, 13(22), 3651. https://doi.org/10.3390/math13223651
