A Novel EMD-1DCNN Framework for Recognizing Concurrent Control Chart Patterns in Autocorrelated Processes
Abstract
1. Introduction
2. Concurrent CCP in Autocorrelated Processes and Abnormal Disturbance Models
- (1)
- Upward and Downward Trend patterns (UT/DT)
- (2)
- Upward and Downward Shift patterns (US/DS)
- (3)
- Cyclic pattern (CYC)
- (4)
- System pattern (SYS)
3. Methodology
3.1. EMD and Correlation Coefficient
- (1)
- Find all maximum points of a signal and use cubic spline interpolation to fit the upper envelope of the original data.
- (2)
- Find all minimum points of a signal and use cubic spline interpolation to fit the lower envelope of the original data.
- (3)
- minus the mean of the upper and lower envelope, a component , is obtained using the following equation.
- (4)
- Determine whether satisfies the requirement of IMF. If yes, is used as the component. Otherwise, repeat steps (1)–(3) until the th meets the requirement. The formulation is given by
- (5)
- minus for obtaining . Then let repeat steps (1)–(3) and determine whether the requirement is satisfied. If necessary, repeat the above steps. Otherwise, stop decomposition.
3.2. Convolutional Neural Network
4. Proposed EMD-1DCNN Model Based on Feature Component Selection
5. Experiments
5.1. EMD and Component Selection
5.2. Structural Parameters of 1DCNN
5.3. Results
5.4. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shewhart, W.A. Economic quality control of quality of manufactured product. Bell Syst. Tech. J. 1931, 9, 364–389. [Google Scholar] [CrossRef]
- Grant, E.L.; Leavenworth, R.S. Statistical Quality Control, 7th ed.; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Guh, R.S. Robustness of the neural network based control chart pattern recognition system to non-normality. Int. J. Qual. Reliab. 2002, 19, 97–112. [Google Scholar] [CrossRef]
- Montgomery, D.C. Introduction to Statistical Quality Control; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Western Electric Company. Statistical Quality Control Handbook, 2nd ed.; Mack Printing Company: Easton, PA, USA, 1956. [Google Scholar]
- Hachicha, W.; Ghorbel, A. A Survey of Control Chart Pattern Recognition Literature (1991–2010) Based on A New Conceptual Classification Scheme. Comput. Ind. Eng. 2012, 63, 204–222. [Google Scholar] [CrossRef]
- Bao, X.; Zheng, Y.; Chen, L.; Wu, D.; Chen, X.; Liu, Y. Abnormal pattern recognition for online inspection in manufacturing process based on multi-scale time series classification. J. Manuf. Syst. 2024, 76, 457–477. [Google Scholar] [CrossRef]
- Huang, J.W.; Lee, P.J.; Jaysawal, B.P. Multi-scale Control Chart Pattern Recognition Using Histogram-based Representation of Value and Zero-crossing Rate. IEEE Trans. Ind. Electron. 2021, 69, 684–693. [Google Scholar] [CrossRef]
- Kalte, A.A.; Babouei, S. Control Chart Patterns Recognition Using ANFIS with New Training Algorithm and Intelligent Utilization of Shape and Statistical Features. ISA Trans. 2020, 102, 12–22. [Google Scholar] [CrossRef]
- Liu, C.; Chen, K.; Jin, S.; Qu, Y.; Yu, J.; Zhou, B. An Integrated Method for Variation Pattern Recognition of BIW OCMM Online Measurement Data. Int. J. Prod. Res. 2021, 60, 1932–1953. [Google Scholar] [CrossRef]
- Xanthopoulos, P.; Razzaghi, T. A Weight Support Vector Machine Method for Control Chart Pattern Recognition. Comput. Ind. Eng. 2014, 70, 134–149. [Google Scholar] [CrossRef]
- Zan, T.; Liu, Z.; Wang, H.; Wang, M.; Gao, X. Control Chart Pattern Recognition Using the Convolutional Neural Network. J. Intell. Manuf. 2020, 31, 703–716. [Google Scholar] [CrossRef]
- Zhou, K.; Chen, Y.; Xiong, W.; Zhang, J.; Gong, X. Control chart pattern recognition for small samples based on Siamese Neural Network. Qual. Eng. 2025, 37, 64–78. [Google Scholar] [CrossRef]
- Psarakis, S.; Papaleonida, G.E.A. SPC Procedures for Monitoring Autocorrelated Processes. Qual. Technol. Quant. Manag. 2007, 4, 501–540. [Google Scholar] [CrossRef]
- Cheng, H.P.; Cheng, C.S. Denoising and Feature Extraction for Control Chart Pattern Recognition in Autocorrelated Processes. Int. J. Signal Imaging Syst. Eng. 2008, 1, 115–126. [Google Scholar] [CrossRef]
- Lin, S.Y.; Guh, R.S.; Shiue, Y.R. Effective Recognition of Control Chart Patterns in Autocorrelated Data Using a Support Vector Machine Based Approach. Comput. Ind. Eng. 2011, 61, 1123–1134. [Google Scholar] [CrossRef]
- Yang, W.A.; Zhou, W.; Liao, W.; Guo, Y. Identification and Quantification of Concurrent Control Chart Patterns Using Extreme-point Symmetric Mode Decomposition and Extreme Learning Machines. Neurocomputing 2015, 147, 260–270. [Google Scholar] [CrossRef]
- De la Torre Gutiérrez, H.; Pham, D.T. Identification of Patterns in Control Charts for Processes with Statistically Correlated Noise. Int. J. Prod. Res. 2018, 56, 1504–1520. [Google Scholar] [CrossRef]
- Li, Y.; Dai, W.; He, Y. Control chart pattern recognition under small shifts based on multi-scale weighted ordinal pattern and ensemble classifier. Comput. Ind. Eng. 2024, 189, 109940. [Google Scholar] [CrossRef]
- Garcia, E.; Penabaena-Niebles, R.; Jubiz-Diaz, M.; Perez-Tafur, A. Concurrent Control Chart Pattern Recognition: A Systematic Review. Mathematics 2022, 10, 934. [Google Scholar] [CrossRef]
- Yang, W.A.; Zhou, W. Autoregressive Coefficient-invariant Control Chart Pattern Recognition in Autocorrelated Manufacturing Processes Using Neural Network Ensemble. J. Intell. Manuf. 2015, 26, 1161–1180. [Google Scholar] [CrossRef]
- Lu, C.J.; Shao, Y.E.; Li, P.H. Mixture Control Chart Patterns Recognition Using Independent Component Analysis and Support Vector Machine. Neurocomputing 2011, 74, 1908–1914. [Google Scholar] [CrossRef]
- Xie, L.; Gu, N.; Li, D.; Cao, Z.; Tan, M.; Nahavandi, S. Concurrent Control Chart Patterns Recognition with Singular Spectrum Analysis and Support Vector Machine. Comput. Ind. Eng. 2013, 64, 280–289. [Google Scholar] [CrossRef]
- Wu, C.; Liu, F.; Zhu, B. Control Chart Pattern Recognition Using an Integrated Model Based on Binary-tree Support Vector Machine. Int. J. Prod. Res. 2015, 53, 2026–2040. [Google Scholar] [CrossRef]
- Xue, L.; Wu, H.; Zheng, H.; He, Z. Control chart pattern recognition for imbalanced data based on multi-feature fusion using convolutional neural network. Comput. Ind. Eng. 2023, 182, 109410. [Google Scholar] [CrossRef]
- Guh, R.S.; Tannock, J.D.T. A Neural Network Approach to Characterize Pattern Parameters in Process Control Charts. J. Intell. Manuf. 1999, 10, 449–462. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, S.; Lam, S. A Hybrid System for SPC Concurrent Pattern Recognition. Adv. Eng. Inform. 2007, 21, 303–310. [Google Scholar] [CrossRef]
- Wang, C.H.; Dong, T.P.; Kuo, W. A Hybrid Approach for Identification of Concurrent Control Chart Patterns. J. Intell. Manuf. 2009, 20, 409–419. [Google Scholar] [CrossRef]
- Gu, N.; Cao, Z.; Xie, L.; Creighton, D.; Tan, M.; Nahavandi, S. Identification of Concurrent Control Chart Patterns with Singular Spectrum Analysis and Learning Vector Quantization. J. Intell. Manuf. 2013, 24, 1241–1252. [Google Scholar] [CrossRef]
- Chiu, J.E.; Tsai, C.H. On-line Concurrent Control Chart Pattern Recognition Using Singular Spectrum Analysis and Random Forest. Comput. Ind. Eng. 2021, 159, 1–12. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, Y.; Wang, R.; Cheng, W. Recognition of Mixture Control Chart Patterns Based on Fusion Feature Reduction and Fireworks Algorithm-optimized MSVM. Pattern Anal. Appl. 2020, 23, 15–26. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, X.; Wang, H.; Xiong, G.; Cheng, W. Features Fusion Exaction and KELM with Modified Grey Wolf Optimizer for Mixture Control Chart Patterns Recognition. IEEE Access 2020, 8, 42469–42480. [Google Scholar] [CrossRef]
- De La Torre Gutierrez, H.; Pham, D.T. Estimation and Generation of Training Patterns for Control Chart Pattern Recognition. Comput. Ind. Eng. 2016, 95, 72–82. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. Proc. Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Yu, J.B.; Wang, S.H. Fault Detection and Recognition of Multivariate Process Based on Feature Learning of One-dimensional Convolutional Neural Network and Stacked Denoised Autoencoder. Int. J. Prod. Res. 2021, 59, 2426–2449. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Q.; Chen, H.; Chu, X. A Deformable CNN-DLSTM Based Transfer Learning Method for Fault Diagnosis of Rolling Bearing Under Multiple Working Conditions. Int. J. Prod. Res. 2020, 59, 4811–4825. [Google Scholar] [CrossRef]
- Li, Y.; Dai, W.; Yu, S.; He, Y. Concurrent control chart pattern recognition in manufacturing processes based on zero-shot learning. ISA Trans. 2024, 154, 228–241. [Google Scholar] [CrossRef]











| Pattern Type | Formula | Parameters |
|---|---|---|
| Upward Trend (UT) | ||
| Downward Trend (DT) | ||
| Upward Shift (US) | ||
| Upward Shift (DS) | ||
| Cycle (CYC) | ||
| Systematic (SYS) |
| Component | Correlation Coefficient () with Raw Data | Selection Result |
|---|---|---|
| IMF1 | 0.5927 | Selected (S2) |
| IMF2 | −0.0144 | Discarded |
| Residual | 0.7620 | Selected (S1) |
| Structure | Parameter and Value |
|---|---|
| Input | |
| Conv1D | |
| BN | -- |
| Conv1D | |
| BN | -- |
| Maxpool | |
| Conv1D | |
| BN | -- |
| Maxpool | |
| Fully connected | M = 896 |
| Dropout | P = 0.5 |
| Output | N = 11 |
| Number | Feature Vector | Accuracy | Number | Feature Vector | Accuracy |
|---|---|---|---|---|---|
| 1 | Raw | 84.14% | 8 | IMF1 + IMF2 + R | 83.12% |
| 2 | Raw + IMF1 | 86.79% | 9 | Raw + IMF1 + IMF2 | 84.22% |
| 3 | Raw + IMF2 | 84.48% | 10 | Raw + IMF1 + R | 85.07% |
| 4 | Raw + R | 84.27% | 11 | Raw + IMF2 + R | 84.25% |
| 5 | IMF1 + IMF2 | 46.94% | 12 | Raw + IMF1 + IMF2 + R | 84.16% |
| 6 | IMF1 + R | 78.09% | 13 | Raw + S1 + S2 | 92.39% |
| 7 | IMF2 + R | 75.92% |
| Parameters | n_Estimators | Max_Depth | Min_Samples_Leaf | Min_Samples_Split |
|---|---|---|---|---|
| Values | 100 | 20 | 1 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Hou, H.; Lei, C.; Wang, M.; Du, Y.; Huang, W. A Novel EMD-1DCNN Framework for Recognizing Concurrent Control Chart Patterns in Autocorrelated Processes. Mathematics 2025, 13, 3577. https://doi.org/10.3390/math13223577
Wu C, Hou H, Lei C, Wang M, Du Y, Huang W. A Novel EMD-1DCNN Framework for Recognizing Concurrent Control Chart Patterns in Autocorrelated Processes. Mathematics. 2025; 13(22):3577. https://doi.org/10.3390/math13223577
Chicago/Turabian StyleWu, Cang, Huijuan Hou, Chunli Lei, Mingliang Wang, Yongjun Du, and Wenpo Huang. 2025. "A Novel EMD-1DCNN Framework for Recognizing Concurrent Control Chart Patterns in Autocorrelated Processes" Mathematics 13, no. 22: 3577. https://doi.org/10.3390/math13223577
APA StyleWu, C., Hou, H., Lei, C., Wang, M., Du, Y., & Huang, W. (2025). A Novel EMD-1DCNN Framework for Recognizing Concurrent Control Chart Patterns in Autocorrelated Processes. Mathematics, 13(22), 3577. https://doi.org/10.3390/math13223577

